Optimisation of the weighting functions of an H∞ controller using genetic algorithms and structured genetic algorithms

被引:15
|
作者
Alfaro-Cid, E. [1 ]
McGookin, E. W. [2 ]
Murray-Smith, D. J. [3 ]
机构
[1] Inst Tecnol Informat, Complex Adapt Syst Grp, Valencia, Spain
[2] Univ Glasgow, Dept Aerosp Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Glasgow, Dept Elect & Elect Engn, Glasgow G12 8QQ, Lanark, Scotland
关键词
H-infinity optimisation; genetic algorithms; structured genetic algorithms; ship control;
D O I
10.1080/00207720701777959
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the optimisation of the weighting functions for an H-infinity controller using genetic algorithms and structured genetic algorithms is considered. The choice of the weighting functions is one of the key steps in the design of an H-infinity controller. The performance of the controller depends on these weighting functions since poorly chosen weighting functions will provide a poor controller. One approach that can solve this problem is the use of evolutionary techniques to tune the weighting parameters. The article presents the improved performance of structured genetic algorithms over conventional genetic algorithms and how this technique can assist with the identification of appropriate weighting functions' orders.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [1] Optimisation of process planning functions by genetic algorithms
    Dereli, T
    Filiz, IH
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 1999, 36 (02) : 281 - 308
  • [2] H∞ controller design for a distillation column using genetic algorithms
    Kitsios, I
    Pimenides, T
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 60 (3-5) : 357 - 367
  • [3] Sequential process optimisation using Genetic Algorithms
    Oduguwa, V
    Tiwari, A
    Roy, R
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 782 - 791
  • [4] Packet transmission optimisation using Genetic Algorithms
    Withall, M
    Hinde, C
    Stone, R
    Cooper, J
    [J]. DEVELOPMENTS IN APPLIED ARTIFICIAL INTELLIGENCE, 2003, 2718 : 653 - 661
  • [5] The quality of optimisation by genetic algorithms
    Wehrens, R
    Pretsch, E
    Buydens, LMC
    [J]. ANALYTICA CHIMICA ACTA, 1999, 388 (03) : 265 - 271
  • [6] Genetic algorithms for modelling and optimisation
    McCall, J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 184 (01) : 205 - 222
  • [7] Genetic algorithms in Stochastic optimisation
    Sanabria, LA
    Soh, B
    Dillon, TS
    Chang, L
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 815 - 822
  • [8] Controller order reduction by using genetic algorithms
    Caponetto, R
    Fortuna, L
    Muscato, G
    Xibilia, MG
    [J]. JOURNAL OF SYSTEMS ENGINEERING, 1996, 6 (02): : 113 - 118
  • [9] Using genetic algorithms to optimize a autopilot controller
    Cong, MY
    Zhang, W
    Wang, LP
    [J]. PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS & SIGNAL PROCESSING, PROCEEDINGS, VOLS 1 AND 2, 2003, : 416 - 419
  • [10] System identification using structured genetic algorithms
    Iba, Hitoshi
    Kurita, Takio
    de Garis, Hugo
    Sato, Taisuke
    [J]. Australian Electronics Engineering, 1994, 27 (02):