HARNACK ESTIMATES FOR THE POROUS MEDIUM EQUATION WITH POTENTIAL UNDER GEOMETRIC FLOW

被引:0
|
作者
Azami, Shahroud [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin, Iran
来源
MATEMATICKI VESNIK | 2022年 / 74卷 / 01期
关键词
Harnack estimates; geometric flow; porous medium equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g(t)), t is an element of [0, T) be a closed Riemannian n-manifold whose Riemannian metric g(t) evolves by the geometric flow partial derivative/partial derivative tg(ij )= -2S(ij), where S-ij(t) is a symmetric two-tensor on (M, g(t)). We discuss differential Harnack estimates for positive solution to the porous medium equation with potential, partial derivative u/partial derivative t = Delta u(p) + Su, where S = g(ij) S-ij is the trace of S-ij, on time-dependent Riemannian metric evolving by the above geometric flow.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条