New Second-Order Schemes for Forward Backward Stochastic Differential Equations

被引:14
|
作者
Sun, Yabing [1 ]
Zhao, Weidong [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Sch Math & Finance Inst, Jinan 250100, Shandong, Peoples R China
关键词
Forward backward stochastic differential equations; Feynman-Kac formula; difference approximation; second-order scheme; ORDER NUMERICAL SCHEMES; MULTISTEP SCHEMES; THETA-SCHEME; DISCRETIZATION; CONVERGENCE;
D O I
10.4208/eajam.100118.070318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Feynman-Kac formulas are used to develop new second-order numerical schemes for the forward-backward stochastic differential equations (FBSDEs) of the first and second order. The methods are simple and allow an easy implementation. Numerous numerical tests for FBSDEs, fully nonlinear second-order parabolic partial differential equations and the Hamilton-Jacobi-Bellman equations show the stability and a high accuracy of the methods.
引用
收藏
页码:399 / 421
页数:23
相关论文
共 50 条