Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions

被引:86
|
作者
von Rueden, Laura [1 ,2 ]
Mayer, Sebastian [1 ,3 ]
Sifa, Rafet [1 ,2 ]
Bauckhage, Christian [1 ,2 ]
Garcke, Jochen [1 ,3 ,4 ]
机构
[1] Fraunhofer Ctr Machine Learning, St Augustin, Germany
[2] Fraunhofer IAIS, St Augustin, Germany
[3] Fraunhofer SCAI, St Augustin, Germany
[4] Univ Bonn, Inst Numer Simulat, Bonn, Germany
关键词
Machine learning; Simulation; Hybrid approaches;
D O I
10.1007/978-3-030-44584-3_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe the combination of machine learning and simulation towards a hybrid modelling approach. Such a combination of data-based and knowledge-based modelling is motivated by applications that are partly based on causal relationships, while other effects result from hidden dependencies that are represented in huge amounts of data. Our aim is to bridge the knowledge gap between the two individual communities from machine learning and simulation to promote the development of hybrid systems. We present a conceptual framework that helps to identify potential combined approaches and employ it to give a structured overview of different types of combinations using exemplary approaches of simulation-assisted machine learning and machine-learning assisted simulation. We also discuss an advanced pairing in the context of Industry 4.0 where we see particular further potential for hybrid systems.
引用
收藏
页码:548 / 560
页数:13
相关论文
共 50 条
  • [1] Applications of machine learning methods in traffic crash severity modelling: current status and future directions
    Wen, Xiao
    Xie, Yuanchang
    Jiang, Liming
    Pu, Ziyuan
    Ge, Tingjian
    TRANSPORT REVIEWS, 2021, 41 (06) : 855 - 879
  • [2] Machine Learning in Malware Analysis: Current Trends and Future Directions
    Altaha, Safa
    Riad, Khaled
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1267 - 1279
  • [3] Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning
    Li, Jianzheng
    Li, Ganqiong
    Wang, Ligang
    Li, Denghua
    Li, Hu
    Gao, Chao
    Zhuang, Minghao
    Zhuang, Jiayu
    Zhou, Han
    Xu, Shiwei
    Hu, Zhengjiang
    Wang, Enli
    FIELD CROPS RESEARCH, 2023, 302
  • [4] Modelling and simulation of adaptive structures and composites: Current trends and future directions
    Benjeddou, A.
    PROGRESS IN COMPUTATIONAL STRUCTURES TECHNOLOGY, 2004, : 251 - 280
  • [5] Hybrid Agent Modeling in Population Simulation: Current Approaches and Future Directions
    Ye, Pei-jun
    Wang, Xiao
    Chen, Cheng
    Lin, Yue-tong
    Wang, Fei-yue
    JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2016, 19 (01):
  • [6] Machine learning applications in the diagnosis of leukemia: Current trends and future directions
    Salah, Haneen T.
    Muhsen, Ibrahim N.
    Salama, Mohamed E.
    Owaidah, Tarek
    Hashmi, Shahrukh K.
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 (06) : 717 - 725
  • [7] Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions
    Ganatra, Hammad A.
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (03)
  • [8] Current works and Future directions on Application of Machine Learning in Primary Care
    Abbasgholizadeh-Rahimi, Samira
    Granikov, Vera
    Pluye, Pierre
    AUGMENTED HUMAN 2020: PROCEEDINGS OF THE 11TH AUGMENTED HUMAN INTERNATIONAL CONFERENCE, 2020,
  • [9] Application of machine learning in surgery research: current uses and future directions
    Chiu, Si-Un Frank
    Hung, Chao-Ming
    Chiu, Chong-Chi
    INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (11) : 3661 - 3662
  • [10] Crowd-Assisted Machine Learning: Current Issues and Future Directions
    Wang, Jiangtao
    Wang, Yasha
    Lv, Qin
    COMPUTER, 2019, 52 (01) : 46 - 53