Fibre Bragg Gratings, Towards a Better Thermal Stability at High Temperatures

被引:4
|
作者
de Oliveira, Valmir [1 ]
Abe, Ilda [1 ]
Alberto, Nelia Jordao [2 ,3 ]
Kalinowski, Hypolito Jose [1 ]
机构
[1] Univ Tecnol Fed Parana, BR-80230901 Curitiba, Parana, Brazil
[2] Univ Aveiro, Inst Telecomunicacoes Aveiro, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, Ctr Tecnol Mecan & Automacao, P-3810193 Aveiro, Portugal
关键词
Fibre Bragg grating; regenerated grating; sensors; fibre optic sensor; OPTICAL-FIBER; BIREFRINGENCE; FILTER;
D O I
10.1016/j.phpro.2015.02.013
中图分类号
O59 [应用物理学];
学科分类号
摘要
Regenerated fibre Bragg gratings (RFBG) are obtained by heating an original seed grating until its reflection practically vanishes, which is followed by the growth of a new reflection band. Advantages of RFBG for sensing purposes are the longer lifetime and higher thermal stability at higher temperatures, as they have been observed to survive temperatures in the range 1300-1500 degrees C. The thermal stability of the RFBG permits several applications not attained by standard Bragg gratings. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [1] Fibre Bragg gratings with high thermal stability
    Guan, BO
    Tam, HY
    Tao, XM
    14TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2000, 4185 : 556 - 559
  • [2] Thermal decay of fibre Bragg gratings
    Baker, SR
    Rourke, HN
    Baker, V
    Goodchild, D
    Davis, S
    Cullen, TJ
    Baulcomb, RS
    Byron, KC
    Fielding, A
    Clements, SJ
    IOOC-ECOC 97 - 11TH INTERNATIONAL CONFERENCE ON INTEGRATED OPTICS AND OPTICAL FIBRE COMMUNICATIONS / 23RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS, VOL 2, 1997, (448): : 57 - 60
  • [3] Thermal properties of fluoride fiber Bragg gratings at high to cryogenic temperatures
    Grebnev, Kirill
    Sultanov, Aidar
    Oelsner, Gregor
    Chiamenti, Ismael
    Chernysheva, Maria
    OPTICS LETTERS, 2024, 49 (22) : 6589 - 6592
  • [4] Predicting thermal stability of fibre Bragg gratings - isothermal annealing within isochronal annealing
    Joseph, R.
    Viswanathan, N. K.
    Asokan, S.
    Madhav, K. V.
    Srinivasan, B.
    ELECTRONICS LETTERS, 2007, 43 (24) : 1341 - 1343
  • [5] Overview of high temperature fibre Bragg gratings
    Cook, K.
    Canning, J.
    Bandyopadhyay, S.
    Lancry, M.
    Martelli, C.
    Jin, T.
    Csipkes, A.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2017,
  • [6] Design and fabrication of superimposed fibre Bragg gratings: towards the optimality
    Popov, M
    Carlsson, F
    Fonjallaz, PY
    FIBER-BASED COMPONENT FABRICATION, TESTING, AND CONNECTORIZATION, 2003, 4943 : 7 - 15
  • [7] Fiber Bragg gratings with enhanced thermal stability
    Brambilla, G
    Rutt, H
    APPLIED PHYSICS LETTERS, 2002, 80 (18) : 3259 - 3261
  • [8] Research on thermal stability of fiber Bragg gratings
    Zhou, Changzun
    Chen, Yang
    Peter, Kung
    Guangxue Xuebao/Acta Optica Sinica, 2003, 23 (04): : 434 - 437
  • [9] An investigation into the wavelength stability of polymer optical fibre Bragg gratings
    Zhang, W.
    Abang, A.
    Webb, D. J.
    Peng, G. -D.
    MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES, 2012, 8426
  • [10] Stability of multisoliton solutions in dispersion management with fibre Bragg gratings
    Ania-Castañón, JD
    García-Fernández, P
    Soto-Crespo, JM
    OPTICAL PULSE AND BEAM PROPAGATION III, 2001, 4271 : 229 - 236