A general class of multivariate skew-elliptical distributions

被引:464
|
作者
Branco, MD [1 ]
Dey, DK
机构
[1] Univ Sao Paulo, Sao Paulo, Brazil
[2] Univ Connecticut, Storrs, CT 06269 USA
关键词
elliptical distributions; exponential power family; mixture of normals; Pearson type II; skewness;
D O I
10.1006/jmva.2000.1960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a general class of multivariate skew-elliptical distributions. We extend earlier results on the so-called multivariate skew-normal distribution. This family of distributions contains the multivariate normal, Student's t, exponential power, and Pearson type II, but with an extra parameter to regulate skewness, We also obtain the moment generating functions and study some distributional properties. Several examples are provided. (C) 2001 Academic Press.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 50 条
  • [1] Multivariate unified skew-elliptical distributions.
    Arellano-Valle, Reinaldo B.
    Genton, Marc G.
    [J]. CHILEAN JOURNAL OF STATISTICS, 2010, 1 (01): : 17 - 33
  • [2] Conjugacy properties of multivariate unified skew-elliptical distributions
    Karling, Maicon J.
    Durante, Daniele
    Genton, Marc G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 204
  • [3] SUFFICIENT DIMENSION REDUCTION WITH MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS
    Guan, Yu
    Xie, Chuanlong
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2017, 27 (01) : 335 - 355
  • [4] Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions
    Yin, Chuancun
    Balakrishnan, Narayanaswamy
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 199
  • [5] Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions
    Arellano-Valle, Reinaldo B.
    Contreras-Reyes, Javier E.
    Genton, Marc G.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (01) : 42 - 62
  • [6] Bayesian modeling using a class of bimodal skew-elliptical distributions
    Elal-Olivero, David
    Gomez, Hector W.
    Quintana, Fernando A.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1484 - 1492
  • [7] Multivariate tail covariance risk measure for generalized skew-elliptical distributions
    Zuo, Baishuai
    Yin, Chuancun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 410
  • [8] L-statistics from multivariate unified skew-elliptical distributions
    Arellano-Valle, R. B.
    Jamalizadeh, Ahad
    Mahmoodian, H.
    Balakrishnan, N.
    [J]. METRIKA, 2014, 77 (04) : 559 - 583
  • [9] Singular extended skew-elliptical distributions
    Diaz-Garcia, Jose A.
    Gonzalez-Farias, Graciela
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (04) : 385 - 392
  • [10] Skew-elliptical distributions and their application -: Preface
    Pewsey, Arthur
    Gonzalez-Farias, Graciela
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) : 1657 - 1659