Graded Possibilistic Clustering of Non-stationary Data Streams

被引:2
|
作者
Abdullatif, A. [1 ,2 ]
Masulli, F. [1 ,3 ]
Rovetta, S. [1 ]
Cabri, A. [1 ]
机构
[1] Univ Genoa, DIBRIS Dept Informat Bioingengering Robot & Syst, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] VEDECOM Inst, Versailles, France
[3] Temple Univ, Coll Sci & Technol, Sbarro Inst Canc Res & Mol Med, Philadelphia, PA 19122 USA
关键词
ALGORITHM;
D O I
10.1007/978-3-319-52962-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multidimensional data streams are a major paradigm in data science. This work focuses on possibilistic clustering algorithms as means to perform clustering of multidimensional streaming data. The proposed approach exploits fuzzy outlier analysis to provide good learning and tracking abilities in both concept shift and concept drift.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 50 条
  • [1] A Fuzzy Clustering Approach to Non-stationary Data Streams Learning
    Abdullatif, A.
    Masulli, F.
    Rovetta, S.
    Cabri, A.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 768 - 769
  • [2] NGPCA: Clustering of high-dimensional and non-stationary data streams
    Migenda, Nico
    Moeller, Ralf
    Schenck, Wolfram
    SOFTWARE IMPACTS, 2024, 20
  • [3] Outlier Detection in Non-stationary Data Streams
    Tran, Luan
    Fan, Liyue
    Shahabi, Cyrus
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2019), 2019, : 25 - 36
  • [4] Rank Aggregation for Non-stationary Data Streams
    Irurozki, Ekhine
    Perez, Aritz
    Lobo, Jesus
    Del Ser, Javier
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 297 - 313
  • [5] Concept-evolution detection in non-stationary data streams: a fuzzy clustering approach
    Poorya ZareMoodi
    Sajjad Kamali Siahroudi
    Hamid Beigy
    Knowledge and Information Systems, 2019, 60 : 1329 - 1352
  • [6] Concept-evolution detection in non-stationary data streams: a fuzzy clustering approach
    ZareMoodi, Poorya
    Siahroudi, Sajjad Kamali
    Beigy, Hamid
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (03) : 1329 - 1352
  • [7] Learning with ensembles from non-stationary data streams
    Verdecia-Cabrera, Alberto
    Frias-Blanco, Isvani
    Quintero-Dominguez, Luis
    Sarabia, Yanet Rodriguez
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2018, 21 (62): : 145 - 158
  • [8] Scarcity of Labels in Non-Stationary Data Streams: A Survey
    Fahy, Conor
    Yang, Shengxiang
    Gongora, Mario
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [9] Learning with ensembles from non-stationary data streams
    Verdecia-Cabrera A.
    Frías-Blanco I.
    Quintero-Domínguez L.
    Sarabia Y.R.
    2018, Asociacion Espanola de Inteligencia Artificial (21) : 145 - 158
  • [10] FlexSketch: Estimation of Probability Density for Stationary and Non-Stationary Data Streams
    Park, Namuk
    Kim, Songkuk
    SENSORS, 2021, 21 (04) : 1 - 19