Certified Data Removal in Sum-Product Networks

被引:0
|
作者
Becker, Alexander [1 ]
Liebig, Thomas [1 ]
机构
[1] TU Dortmund Univ, Chair Artificial Intelligence, Comp Sci, Dortmund, Germany
关键词
Sum-Product Networks; Data Privacy; Unlearning; Forgetting; Trustworthy ML;
D O I
10.1109/ICKG55886.2022.00010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data protection regulations like the GDPR or the California Consumer Privacy Act give users more control over the data that is collected about them. Deleting the collected data is often insufficient to guarantee data privacy since it is often used to train machine learning models, which can expose information about the training data. Thus, a guarantee that a trained model does not expose information about its training data is additionally needed. In this paper, we present UNLEARNSPN - an algorithm that removes the influence of single data points from a trained sum-product network and thereby allows fulfilling data privacy requirements on demand.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [1] Robustness in Sum-Product Networks with Continuous and Categorical Data
    de Wit, Rob C.
    de Campos, Cassio P.
    Conaty, Diarmaid
    del Rincon, Jesus Martinez
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 156 - 158
  • [2] Residual Sum-Product Networks
    Ventola, Fabrizio
    Stelzner, Karl
    Molina, Alejandro
    Kersting, Kristian
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 545 - 556
  • [3] Sum-Product Networks: A Survey
    Sanchez-Cauce, Raquel
    Paris, Iago
    Javier Diez, Francisco
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3821 - 3839
  • [4] Survey of sum-product networks
    Dai, Qi
    Liu, Jian-Wei
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (11): : 1965 - 1990
  • [5] Robustifying sum-product networks
    Maua, Denis Deratani
    Conaty, Diarmaid
    Cozman, Fabio Gagliardi
    Poppenhaeger, Katja
    de Campos, Cassio Polpo
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 101 : 163 - 180
  • [6] Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks
    Vergari, Antonio
    Peharz, Robert
    Di Mauro, Nicola
    Molina, Alejandro
    Kersting, Kristian
    Esposito, Floriana
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4163 - 4170
  • [7] Bayesian Learning of Sum-Product Networks
    Trapp, Martin
    Peharz, Robert
    Ge, Hong
    Pernkopf, Franz
    Ghahramani, Zoubin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] Dual Sum-Product Networks Autoencoding
    Wang, Shengsheng
    Zhang, Hang
    Liu, Jiayun
    Yu, Qiang-Yuan
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 377 - 387
  • [9] On Theoretical Properties of Sum-Product Networks
    Peharz, Robert
    Tschiatschek, Sebastian
    Pernkopf, Franz
    Domingos, Pedro
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 744 - 752
  • [10] On Learning the Structure of Sum-Product Networks
    Butz, Cory J.
    Oliveira, Jhonatan S.
    dos Santos, Andre E.
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 2997 - 3004