Slices in the Unit Ball of the Symmetric Tensor Product of a Banach Space

被引:0
|
作者
Acosta, Maria D. [1 ]
Becerra Guerrero, Julio [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Banach spaces; slice; homogeneous polynomial; integral polynomial; symmetric projective tensor product; symmetric injective tensor product; C*-algebra; RADON-NIKODYM PROPERTY; POLYNOMIALS; THEOREM; GEOMETRY; POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every infinite-dimensional C*-algebra X satisfies that every slice of the unit ball of (circle times) over cap (N-fold projective symmetric tensor product of X) has diameter two. We deduce that every infinite-dimensional Banach space X whose dual is an L-1-space satisfies the same result. As a consequence, if X is either a C*-algebra or either a predual of an L-1-space, then the space of all N-homogeneous polynomials on X, P-N (X), is extremely rough, whenever X is infinite-dimensional. If Y is a predual of a von Neumann algebra, then Y is infinite-dimensional if, and only if, every w*-slice of the unit ball of P-I(N)(Y) (the space of integral N-homogeneous polynomials on Y) has diameter two. As a consequence, under the previous assumptions, the N-fold symmetric injective tensor product of Y is extremely rough. Indeed, this isometric condition characterizes infinite-dimensional spaces in the class of preduals of von Neumann algebras.
引用
收藏
页码:513 / 528
页数:16
相关论文
共 50 条
  • [1] Slices in the unit ball of the symmetric tensor product of C(K) and L1(μ)
    Acosta, Maria D.
    Becerra Guerrero, Julio
    ARKIV FOR MATEMATIK, 2009, 47 (01): : 1 - 12
  • [2] Weakly open sets in the unit ball of the projective tensor product of Banach spaces
    Acosta, Maria D.
    Becerra Guerrero, Julio
    Rodriguez-Palacios, Angel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) : 461 - 473
  • [3] ON CONVEX COMBINATIONS OF SLICES OF THE UNIT BALL IN BANACH SPACES
    Haller, Rainis
    Kuuseok, Paavo
    Poldvere, Mart
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1153 - 1168
  • [4] COVEING UNIT BALL IN A BANACH SPACE
    CONNETT, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 7 (NOV): : 291 - 294
  • [5] COVERING UNIT BALL IN A BANACH SPACE
    CONNETT, JE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 954 - &
  • [6] Polynomial properties and symmetric tensor product of Banach spaces
    F. Bombal
    M. Fernández
    Archiv der Mathematik, 2000, 74 : 40 - 49
  • [7] Polynomial properties and symmetric tensor product of Banach spaces
    Bombal, F
    Fernández, M
    ARCHIV DER MATHEMATIK, 2000, 74 (01) : 40 - 49
  • [8] Representable Functions on the Unit Ball of a Banach Space
    Pinasco, Damian
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (03) : 383 - 398
  • [9] Representable Functions on the Unit Ball of a Banach Space
    Damián Pinasco
    Mediterranean Journal of Mathematics, 2011, 8 : 383 - 398
  • [10] BLOCH FUNCTIONS ON THE UNIT BALL OF A BANACH SPACE
    Miralles, Alejandro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1459 - 1470