Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange

被引:19
|
作者
Khavrutskii, Ilja V. [1 ]
Wallqvist, Anders [1 ]
机构
[1] USA, Biotechnol HPC Software Applicat Inst, Telemed & Adv Technol Res Ctr, Med Res & Mat Command, Ft Detrick, MD 21702 USA
关键词
ACCELERATED MOLECULAR-DYNAMICS; HYDRATION FREE-ENERGIES; BINDING FREE-ENERGIES; MONTE-CARLO SIMULATIONS; CHARGE FORCE-FIELDS; CONFORMATIONAL FLEXIBILITY; CIS/TRANS ISOMERIZATION; EFFICIENT GENERATION; AUTOMATED DOCKING; EXPLICIT-SOLVENT;
D O I
10.1021/ct1003302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Of note, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.
引用
收藏
页码:3427 / 3441
页数:15
相关论文
共 48 条
  • [1] Improving relative solvation and binding free energy calculations by augmenting Thermodynamic Integration with Hamiltonian Replica Exchange
    Khavrutskii, Ilja
    Wallqvist, Anders
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [2] Improved Binding Free Energy Predictions from Single-Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange
    Khavrutskii, Ilja V.
    Wallqvist, Anders
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (09) : 3001 - 3011
  • [3] Calculations of relative hydration free energies: A comparative study using thermodynamic integration and an extrapolation method based on a single reference state
    Mordasini, TZ
    McCammon, JA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (02): : 360 - 367
  • [4] Prediction of Solvation Free Energies with Thermodynamic Integration Using the General Amber Force Field
    Martins, Silvia A.
    Sousa, Sergio F.
    Ramos, Maria Joao
    Fernandes, Pedro A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (08) : 3570 - 3577
  • [5] A replica-exchange approach to computing peptide conformational free energies
    Shell, M. Scott
    [J]. MOLECULAR SIMULATION, 2010, 36 (7-8) : 505 - 515
  • [6] Fast and Accurate Calculation of Small Molecule Solvation Free Energies using Replica Exchange Accelerated Molecular Dynamics
    Arrar, Mehrnoosh
    Sinko, William
    Fajer, Mikolai
    Agusto, Cesar
    de Oliveira, F.
    McCammon, J. Andrew
    [J]. BIOPHYSICAL JOURNAL, 2012, 102 (03) : 447A - 447A
  • [7] Replica-Exchange Enveloping Distribution Sampling: Calculation of Relative Free Energies in GROMOS
    Rieder, Salome R.
    Ries, Benjamin
    Champion, Candide
    Barros, Emilia P.
    Hunenberger, Philippe H.
    Riniker, Sereina
    [J]. CHIMIA, 2022, 76 (04) : 327 - 330
  • [8] Computing Ion Solvation Free Energies Using the Dipolar Poisson Model
    Koehl, Patrice
    Orland, Henri
    Delarue, Marc
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (17): : 5694 - 5697
  • [9] On the calculation of free energies over Hamiltonian and order parameters via perturbation and thermodynamic integration
    Escobedo, Fernando A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (11):
  • [10] Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis
    Jiang, Wei
    Thirman, Jonathan
    Jo, Sunhwan
    Roux, Benoit
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (41): : 9435 - 9442