Minimal completely separating systems of k-sets" (vol 93, pg 192, 2001)

被引:0
|
作者
Kündgen, A [1 ]
Mubayi, D
Tetali, P
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1016/S0097-3165(03)00096-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:403 / 404
页数:2
相关论文
共 50 条
  • [1] Minimal completely separating systems of k-sets
    Kündgen, A
    Mubayi, D
    Tetali, P
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 93 (01) : 192 - 198
  • [2] Completely separating systems of k-sets
    [J]. Discrete Math, 1-3 (265-275):
  • [3] Completely separating systems of k-sets
    Ramsay, C
    Roberts, IT
    Ruskey, F
    [J]. DISCRETE MATHEMATICS, 1998, 183 (1-3) : 265 - 275
  • [4] Completely separating systems of k-sets for 7 <= k <= 10
    Roberts, Ian T.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 33 : 87 - 98
  • [5] Completely separating systems of k-sets for (sic) <= n < (sic) or 11 <= k <= 12
    Roberts, Ian T.
    D'Arcy, Sue
    Gronau, Hans-Dietrich O. F.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 55 : 73 - 94
  • [6] Inclusionwise minimal completely separating systems
    Patkós B.
    Tichler K.
    Wiener G.
    [J]. Journal of Statistical Theory and Practice, 2009, 3 (2) : 455 - 462
  • [7] Minimal (n) and (n, h, k) Completely Separating Systems3
    Roberts, Ian T.
    Rylands, Leanne J.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 33 : 57 - 66
  • [9] On class [m, n](1) k-sets in PG (2, 3)
    Ferri, Stefania
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (02): : 187 - 191
  • [10] On the number of minimal completely separating systems and antichains in a Boolean lattice
    Roberts, Ian T.
    Rylands, Leanne J.
    Montag, Terry
    Gruttmuller, Martin
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 143 - 158