Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction
被引:2
|
作者:
论文数: 引用数:
h-index:
机构:
Kishan, K. C.
[1
]
Cui, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, Rochester, NY 14623 USARochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
Cui, Feng
[2
]
Haake, Anne R.
论文数: 0引用数: 0
h-index: 0
机构:
Rochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USARochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
Haake, Anne R.
[1
]
Li, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Rochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USARochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
Li, Rui
[1
]
机构:
[1] Rochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
[2] Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, Rochester, NY 14623 USA
Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology. Although various deep learning models in Siamese architecture have been proposed to model PPIs from sequences, these methods are computationally expensive for a large number of PPIs due to the pairwise encoding process. Furthermore, these methods are difficult to interpret because of non-intuitive mappings from protein sequences to their sequence representation. To address these challenges, we present a novel deep framework to model and predict PPIs from sequence alone. Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences. We further employ a sparse regularization to model long-range dependencies between amino acids and to select important amino acids (protein motifs), thus enhancing interpretability. Besides, the novel design of the encoding process makes our model computationally efficient and scalable to an increasing number of interactions. Experimental results on up-to-date interaction datasets demonstrate that our model achieves superior performance compared to other state-of-the-art methods. Literature-based case studies illustrate the ability of our model to provide biological insights to interpret the predictions.
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Hu, Xiaotian
Feng, Cong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Feng, Cong
Ling, Tianyi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Zhejiang Univ, Sch Med, Hangzhou, Zhejiang, Peoples R China
Zhejiang Univ, Canc Ctr, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Ling, Tianyi
Chen, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Zhejiang Univ, Sch Med, Affiliated Hosp 1, Inst Hematol, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
机构:
Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Liu, Tuoyu
Gao, Han
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Gao, Han
Ren, Xiaopu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Ren, Xiaopu
Xu, Guoshun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Xu, Guoshun
Liu, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Liu, Bo
Wu, Ningfeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Wu, Ningfeng
Luo, Huiying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Luo, Huiying
Wang, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Wang, Yuan
Tu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Tu, Tao
Yao, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Yao, Bin
Guan, Feifei
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Guan, Feifei
Teng, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Acad Mil Med Sci, Beijing Inst Microbiol & Epidemiol, State Key Lab Pathogen & Biosecur, Beijing 100071, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Teng, Yue
Huang, Huoqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
Huang, Huoqing
Tian, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R ChinaChinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
机构:
Hong Kong Univ Sci & Technol, Bioengn Program, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Bioengn Program, Kowloon, Hong Kong, Peoples R China
Marini, Simone
论文数: 引用数:
h-index:
机构:
Xu, Qian
Yang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Bioengn Program, Kowloon, Hong Kong, Peoples R China