Posteriori error estimators for the Raviart-Thomas element

被引:125
|
作者
Braess, D
Verfurth, R
机构
[1] Ruhr-Universitat Bochum, Mathematisches Institut, D-44780 Bochum
关键词
a posteriori error estimation; Raviart-Thomas element; mesh-dependent norms; mixed formulation of the Poisson equation;
D O I
10.1137/S0036142994264079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When error estimators for the Raviart-Thomas element are developed, two difficulties prevent the success of the straightforward application of frequently used arguments. The H(div, Omega)-norm is an anisotropic norm; i.e., it refers to differential operators of different orders. Moreover, the traces of H(div, Omega)-functions are only in H--1/2. Therefore, one does not obtain optimal a posteriori error estimates when using natural norms. This drawback is overcome by using mesh-dependent norms.
引用
收藏
页码:2431 / 2444
页数:14
相关论文
共 50 条