MLSNET: RESOURCE-EFFICIENT ADAPTIVE INFERENCE WITH MULTI-LEVEL SEGMENTATION NETWORKS

被引:0
|
作者
Yokoo, Shuhei [1 ]
Iizuka, Satoshi [1 ,2 ]
Fukui, Kazuhiro [1 ,2 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] C AIR, Tsukuba, Ibaraki, Japan
关键词
semantic segmentation; convolutional network; adaptive inference;
D O I
10.1109/icip.2019.8803093
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we propose a multi-level convolutional network for semantic segmentation. The advantage of our network is that it allows us to adaptively control the balance between the classification accuracy and the inference speed, depending on the limited computational resource and the complexity of a given task. Our network realizes such adaptive mechanism by introducing a hierarchically-connected decoder with multilevel classifiers. The low-level classifier is used for inference when the application prioritizes low computational cost over accuracy, and the high-level classifier is utilized when more accurate prediction is required. This switching can be automatically performed by specifying only a threshold for classification performance. Besides, to boost the lower-level classifiers, we incorporate a knowledge distillation mechanism into our network. The entire network is trained in an end-to-end fashion. Experiments on semantic segmentation datasets demonstrate that our model overperforms the conventional approaches.
引用
收藏
页码:1510 / 1514
页数:5
相关论文
共 50 条
  • [1] A Resource-Efficient Inference Accelerator for Binary Convolutional Neural Networks
    Kim, Tae-Hwan
    Shin, Jihoon
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (01) : 451 - 455
  • [2] Resource-efficient inference for particle physics
    Rousseau, David
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (08) : 656 - 657
  • [3] Resource-efficient inference for particle physics
    David Rousseau
    [J]. Nature Machine Intelligence, 2021, 3 : 656 - 657
  • [4] MULTI-LEVEL DIFFUSION ADAPTIVE NETWORKS
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2789 - 2792
  • [5] Resource-Efficient Model Inference for AIoT: A Survey
    Yuan, Mu
    Zhang, Lan
    Yao, Yun-Hao
    Zhang, Jun-Yang
    Luo, Pu-Han
    Li, Xiang-Yang
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (10): : 2247 - 2273
  • [6] Ristretto: A Framework for Empirical Study of Resource-Efficient Inference in Convolutional Neural Networks
    Gysel, Philipp
    Pimentel, Jon
    Motamedi, Mohammad
    Ghiasi, Soheil
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5784 - 5789
  • [7] A resource-efficient adaptive Fourier analyzer
    Hajdu, C. F.
    Zamantzas, C.
    Daboczi, T.
    [J]. JOURNAL OF INSTRUMENTATION, 2016, 11
  • [8] Efficient cache resource aggregation using adaptive multi-level exclusive caching policies
    Cheng, Yuxia
    Xiang, Yang
    Chen, Wenzhi
    Hassan, Houcine
    Alelaiwi, Abdulhameed
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 964 - 974
  • [9] TAILOR: Altering Skip Connections for Resource-Efficient Inference
    Weng, Olivia
    Marcano, Gabriel
    Loncar, Vladimir
    Khodamoradi, Alireza
    Abarajithan, G.
    Sheybani, Nojan
    Meza, Andres
    Koushanfar, Farinaz
    Denolf, Kristof
    Duarte, Javier Mauricio
    Kastner, Ryan
    [J]. ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2024, 17 (01)
  • [10] Multi-Level Inference by Relaxed Dual Decomposition for Human Pose Segmentation
    Wang, Huayan
    Koller, Daphne
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,