On the range closure of an elementary operator

被引:1
|
作者
Duggal, BP [1 ]
机构
[1] UAEU, Coll Sci, Dept Math, Al Ain, U Arab Emirates
关键词
Hilbert space; elementary operator; contraction; generalized scalar operator; SVEP;
D O I
10.1016/j.laa.2004.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B(H) denote the algebra of operators on a Hilbert H. Let Delta(AB) is an element of B(B(H)) and E is an element of B(B(H)) denote the elementary operators Delta(AB)(X) = AXB - X and E(X) = AXB - CXD. We answer two questions posed by Turnsek [Mh. Math. 132 (2001) 349-354] to prove that: (i) if A, B are contractions, then B(H) = Delta(-1)(AB) (0) circle times Delta(AB) (B(H)) if and only if Delta(n)(AB)(B(H)) is closed for some integer n >= 1; (ii) if A, B, C and D are normal operators such that A commutes with C and B commutes with D, then B(H) = E-1(0) circle plus E(B(H)) if and only if 0 is an element of iso sigma (E). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 50 条