Effect of Gate Conductance on Hygroscopic Insulator Organic Field-Effect Transistors

被引:7
|
作者
Arthur, Joshua N. [1 ]
Chaudhry, Mujeeb Ullah [2 ]
Woodruff, Maria A. [3 ,4 ]
Pandey, Ajay K. [4 ,5 ]
Yambem, Soniya D. [1 ,4 ]
机构
[1] QUT, Sci & Engn Fac, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[2] Univ Durham, Dept Engn, South Rd, Durham DH1 3LE, England
[3] QUT, Sci & Engn Fac, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[4] QUT, Inst Hlth & Biomed Innovat, Kelvin Grove, Qld 4053, Australia
[5] QUT, Sci & Engn Fac, Sch Elect Engn & Robot, Brisbane, Qld 4000, Australia
关键词
gate conductance; hygroscopic insulators; field-effect transistors; organic transistors; thin-film transistors; sensors; THIN-FILM TRANSISTORS; HIGH-PERFORMANCE; SENSORS;
D O I
10.1002/aelm.201901079
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hygroscopic insulator field-effect transistors (HIFETs) are a class of low-voltage-operation organic transistors that have been successfully demonstrated for biosensing applications through modification of the gate electrode. However, modification of the gate electrode often leads to nonideal transistor characteristics due to changes in its intrinsic electrical properties. This work investigates the effect of gate conductance in HIFETs using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) as a model gate electrode. It is revealed that a reduction in gate conductance results in a reduction in the effective gate voltage and plays an important role in defining HIFET characteristics. Key figures of merit, including ON/OFF ratio, threshold voltage, transconductance, and saturation mobility increase with increasing gate conductance and reach a plateau once sufficient gate conductance is attained. This effect is attributed to a decrease in the effective gate voltage along the gate electrode arising from its resistivity when a gate leakage current is present. These results are widely applicable and serve as design rules for HIFET device optimization.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Organic field-effect transistors with ultrathin gate insulator
    Majewski, LA
    Schroeder, R
    Grell, M
    SYNTHETIC METALS, 2004, 144 (01) : 97 - 100
  • [2] Downscaling of Organic Field-Effect Transistors with a Polyelectrolyte Gate Insulator
    Herlogsson, Lars
    Noh, Yong-Young
    Zhao, Ni
    Crispin, Xavier
    Sirringhaus, Henning
    Berggren, Magnus
    ADVANCED MATERIALS, 2008, 20 (24) : 4708 - +
  • [3] Organic field-effect transistors with ultrathin modified gate insulator
    Majewski, LA
    Grell, M
    SYNTHETIC METALS, 2005, 151 (02) : 175 - 179
  • [4] High capacitance organic field-effect transistors with modified gate insulator surface
    Majewski, LA
    Schroeder, R
    Grell, M
    Glarvey, PA
    Turner, ML
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (10) : 5781 - 5787
  • [5] Gate insulators in organic field-effect transistors
    Veres, J
    Ogier, S
    Lloyd, G
    de Leeuw, D
    CHEMISTRY OF MATERIALS, 2004, 16 (23) : 4543 - 4555
  • [6] Current modulation of a hygroscopic insulator organic field-effect transistor
    Bäcklund, TG
    Sandberg, HGO
    Osterbacka, R
    Stubb, H
    APPLIED PHYSICS LETTERS, 2004, 85 (17) : 3887 - 3889
  • [7] Flexible high capacitance nanocomposite gate insulator for printed organic field-effect transistors
    Rasul, Amjad
    Zhang, Jie
    Gamota, Dan
    Singh, Manish
    Takoudis, Christos
    THIN SOLID FILMS, 2010, 518 (23) : 7024 - 7028
  • [8] Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors
    Gluschke, J. G.
    Seid, J.
    Lyttleton, R. W.
    Carrad, D. J.
    Cochrane, J. W.
    Lehrnann, S.
    Samuelson, L.
    Micolich, A. P.
    NANO LETTERS, 2018, 18 (07) : 4431 - 4439
  • [9] Conductance switching in organic ferroelectric field-effect transistors
    Asadi, Kamal
    Blom, Paul W. M.
    de Leeuw, Dago M.
    APPLIED PHYSICS LETTERS, 2011, 99 (05)
  • [10] Structured-gate organic field-effect transistors
    Aljada, Muhsen
    Pandey, Ajay K.
    Velusamy, Marappan
    Burn, Paul L.
    Meredith, Paul
    Namdas, Ebinazar B.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (22)