Upper and lower bounds for the rank of the matrix-valued function A plus BXC when X has a fixed rank

被引:1
|
作者
Tian, Yongge [1 ]
机构
[1] Cent Univ Finance & Econ, China Econ & Management Acad, Beijing, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2017年 / 65卷 / 10期
关键词
Matrix-valued function; rank; matrix decomposition; partially-specified matrices; 15A23; 15A24; 65F05; SINGULAR-VALUE DECOMPOSITION; APPROXIMATION; TRIPLETS;
D O I
10.1080/03081087.2017.1322034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a matrix-valued function f(X) = A + BXC, where A. Cmxn, B. Cmxp, and C. Cqxn are known matrices, we first review two known fundamental formulas for calculating the maximum and minimum ranks of the matrix-valued function f(X) when X runs over Cpxq. We then establish some new formulas for calculating the maximum and minimum ranks of f(X) when X runs over Cpxq with a restriction rank(X) = t by using a simultaneous decomposition of A, B and C, and some tricky matrix operations. Some applications of the rank formulas in completing partially-specified matrices are also given.
引用
收藏
页码:2101 / 2113
页数:13
相关论文
共 2 条
  • [1] Low Rank Matrix-valued Chernoff Bounds and Approximate Matrix Multiplication
    Magen, Avner
    Zouzias, Anastasios
    [J]. PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1422 - 1436
  • [2] A SURVEY ON RANK AND INERTIA OPTIMIZATION PROBLEMS OF THE MATRIX-VALUED FUNCTION A
    Tian, Yongge
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (03): : 289 - 326