Topologically inequivalent quantizations

被引:3
|
作者
Acquaviva, G. [1 ,2 ]
Iorio, A. [3 ]
Smaldone, L. [3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18000 8, Czech Republic
[2] Arquimea Res Ctr, Camino Mantecas, Santa Cruz De Tenerife 38320, Spain
[3] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, Prague 18000 8, Czech Republic
关键词
Inequivalent representation; Topological defect; Boson transformation; Vortex; Spontaneous symmetry breaking; QUANTUM-FIELD THEORY; DYNAMICAL REARRANGEMENT; GOLDSTONE THEOREM; REPRESENTATIONS; SYMMETRY;
D O I
10.1016/j.aop.2021.168641
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the representations of the algebra of quantization, the canonical commutation relations, in a scalar quantum field theory with spontaneously broken U(1) internal symmetry, when a topological defect of the vortex type is formed via the con-densation of Nambu-Goldstone particles. We find that the usual thermodynamic limit is not necessary in order to have the in-equivalent representations needed for the existence of physically disjoint, stable phases of the system. This points to a novel no-tion of spontaneous symmetry breaking, one where the volume can stay finite, an instance that makes our treatment substan-tially different from the usual semiclassical (NOLGA) approach to vortices. This new type of inequivalence is different from the well-known inequivalence occurring for the quantum particle on the circle. We finally comment on possible applications to quantum gravity. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] THE GEOMETRY OF INEQUIVALENT QUANTIZATIONS
    LANDSMAN, NP
    LINDEN, N
    [J]. NUCLEAR PHYSICS B, 1991, 365 (01) : 121 - 160
  • [2] Inequivalent quantizations of gauge theories
    Horie, K
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (13): : 2023 - 2036
  • [3] INEQUIVALENT QUANTIZATIONS OF THE NEUMANN MODEL
    LINDEN, N
    [J]. PHYSICS LETTERS B, 1992, 288 (1-2) : 104 - 108
  • [4] INEQUIVALENT QUANTIZATIONS AND FUNDAMENTALLY PERFECT SPACES
    IMBO, TD
    SUDARSHAN, ECG
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (06) : 481 - 483
  • [5] INEQUIVALENT QUANTIZATIONS IN MULTIPLY CONNECTED SPACES
    HORVATHY, PA
    MORANDI, G
    SUDARSHAN, ECG
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1989, 11 (1-2): : 201 - 228
  • [6] Collective dynamics of solitons and inequivalent quantizations
    Garrahan, JP
    Kruczenski, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (12) : 6178 - 6188
  • [7] TOPOLOGICALLY INEQUIVALENT EMBEDDINGS
    MINDLIN, GB
    SOLARI, HG
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 1497 - 1502
  • [8] Inequivalent quantizations of the rational Calogero model
    Basu-Mallick, B
    Ghosh, PK
    Gupta, KS
    [J]. PHYSICS LETTERS A, 2003, 311 (2-3) : 87 - 92
  • [9] Collective coordinates and inequivalent coset space quantizations
    Garrahan, JP
    Kruczenski, M
    [J]. SOLITONS: PROPERTIES, DYNAMICS, INTERACTIONS, APPLICATIONS, 2000, : 33 - 37
  • [10] INEQUIVALENT QUANTIZATIONS FOR NONLINEAR SIGMA-MODEL
    DATE, G
    GOVINDARAJAN, TR
    SANKARAN, P
    SHANKAR, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) : 293 - 313