Intrusion detection using multiple classifiers fusion and clustering analysis

被引:0
|
作者
Zhong, Cheng [1 ]
Mi, Aizhong [1 ]
Yang, Feng [1 ]
机构
[1] Guangxi Univ, Sch Comp & Elect & Informat, Nanning 530004, Peoples R China
关键词
clustering analysis; decision fusion; intrusion detection; multiple classifiers fusion;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decision fusion of multiple classifiers can obtain more accurately classification than the best single classifier. By applying multiple classifiers fusion and clustering analysis and the nearest neighbor rule respectively, this paper presents a new intrusion detection algorithm. The analysis and experiment results show that this algorithm can achieve a good detection performance and reduce remarkably the errors and false alarms for intrusion detection.
引用
下载
收藏
页码:1181 / 1183
页数:3
相关论文
共 50 条
  • [1] Fusion of multiple classifiers for intrusion detection in computer networks
    Giacinto, G
    Roli, F
    Didaci, L
    PATTERN RECOGNITION LETTERS, 2003, 24 (12) : 1795 - 1803
  • [2] Multiple classifiers combination based on protocol analysis for network - Intrusion detection
    Sungang
    Zhangli
    Guojun
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1578 - 1581
  • [3] Intrusion detection using ensemble of SVM classifiers
    Xiao, Haijun
    Hong, Fan
    Zhang, Zhaoli
    Liao, Junguo
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 4, PROCEEDINGS, 2007, : 45 - 49
  • [4] Entropy clustering-based granular classifiers for network intrusion detection
    Hui Liu
    Gang Hao
    Bin Xing
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [5] Entropy clustering-based granular classifiers for network intrusion detection
    Liu, Hui
    Hao, Gang
    Xing, Bin
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [6] Analysis of Credit Card Fraud Detection Using Fusion Classifiers
    Kumari, Priyanka
    Mishra, Smita Prava
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 111 - 122
  • [7] An intrusion detection approach based on multiple rough classifiers integration
    Feng, Lin
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2011, 23 (02) : 223 - 231
  • [8] Application of clustering analysis in Intrusion Detection
    Zhang, Yifan
    Li, Xingshan
    Xu, Min
    3RD INTERNATIONAL CONFERENCE ON INTELLIGENT ENERGY AND POWER SYSTEMS (IEPS 2017), 2017, : 149 - 154
  • [9] Classification of intrusion detection alerts using abstaining classifiers
    Pietraszek, Tadeusz
    INTELLIGENT DATA ANALYSIS, 2007, 11 (03) : 293 - 316
  • [10] Intrusion Detection Using a Cascade of Boosted Classifiers (CBC)
    Baig, Mubasher
    El-Alfy, El-Sayed M.
    Awais, Mian M.
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1386 - 1392