On the Newton number of rectangles

被引:0
|
作者
Kemnitz, A
Moller, M
机构
来源
INTUITIVE GEOMETRY | 1997年 / 6卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Newton number N(K) of a convex body K is the maximum number of disjoint congruent copies of K that can be arranged around K such that all touch K without having interior points in common. If R = R(a,b) is a rectangle with edge lengths a and b and a/b = n + r, n is an element of N, 0 less than or equal to r < 1 then 2n + 6 less than or equal to N(R) less than or equal to 2n + 7. Moreover, if 0 less than or equal to r less than or equal to 1/2 then N(R) = 2n + 6 and if root 3/2 = 0.8660... less than or equal to r < 1 then Ar(R) = 2n + 7.
引用
收藏
页码:373 / 381
页数:9
相关论文
共 50 条
  • [1] ON THE NUMBER OF LATIN RECTANGLES
    Stones, Douglas S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) : 167 - 170
  • [2] Divisors of the number of Latin rectangles
    Stones, Douglas S.
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (02) : 204 - 215
  • [3] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (01) : 61 - 61
  • [4] On Computing the Number of Latin Rectangles
    Stones, Rebecca J.
    Lin, Sheng
    Liu, Xiaoguang
    Wang, Gang
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1187 - 1202
  • [5] On the Number of Tilings of a Square by Rectangles
    Jim Conant
    Tim Michaels
    Annals of Combinatorics, 2014, 18 : 21 - 34
  • [6] NUMBER OF RECTANGLES OF UNIT WIDTH SUFFICIENT FOR PACKING GIVEN RECTANGLES
    BAKENROT, VY
    MAKAREVICH, OB
    CHEFRANOV, AG
    CYBERNETICS, 1984, 20 (01): : 38 - 41
  • [7] On the Number of Tilings of a Square by Rectangles
    Conant, Jim
    Michaels, Tim
    ANNALS OF COMBINATORICS, 2014, 18 (01) : 21 - 34
  • [8] On Computing the Number of Latin Rectangles
    Rebecca J. Stones
    Sheng Lin
    Xiaoguang Liu
    Gang Wang
    Graphs and Combinatorics, 2016, 32 : 1187 - 1202
  • [9] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) : 231 - 236
  • [10] Maximizing the number of packed rectangles
    Jansen, K
    Zhang, GC
    ALGORITHM THEORY- SWAT 2004, 2004, 3111 : 362 - 371