CEFusion: Multi-Modal medical image fusion via cross encoder

被引:5
|
作者
Zhu, Ya [1 ]
Wang, Xue [1 ]
Chen, Luping [1 ]
Nie, Rencan [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Yunnan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1049/ipr2.12549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing deep learning-based multi-modal medical image fusion (MMIF) methods utilize single-branch feature extraction strategies to achieve good fusion performance. However, for MMIF tasks, it is thought that this structure cuts off the internal connections between source images, resulting in information redundancy and degradation of fusion performance. To this end, this paper proposes a novel unsupervised network, termed CEFusion. Different from existing architecture, a cross-encoder is designed by exploiting the complementary properties between the original image to refine source features through feature interaction and reuse. Furthermore, to force the network to learn complementary information between source images and generate the fused image with high contrast and rich textures, a hybrid loss is proposed consisting of weighted fidelity and gradient losses. Specifically, the weighted fidelity loss can not only force the fusion results to approximate the source images but also effectively preserve the luminance information of the source image through weight estimation, while the gradient loss preserves the texture information of the source image. Experimental results demonstrate the superiority of the method over the state-of-the-art in terms of subjective visual effect and quantitative metrics in various datasets.
引用
收藏
页码:3177 / 3189
页数:13
相关论文
共 50 条
  • [1] CEFusion: Multi-Modal medical image fusion via cross encoder
    Zhu, Ya
    Wang, Xue
    Chen, Luping
    Nie, Rencan
    IET Image Processing, 2023, 16 (12) : 3177 - 3189
  • [2] An overview of multi-modal medical image fusion
    Du, Jiao
    Li, Weisheng
    Lu, Ke
    Xiao, Bin
    NEUROCOMPUTING, 2016, 215 : 3 - 20
  • [3] A novel multi-modal medical image fusion algorithm
    Xinhua Li
    Jing Zhao
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 1995 - 2002
  • [4] A novel multi-modal medical image fusion algorithm
    Li, Xinhua
    Zhao, Jing
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (02) : 1995 - 2002
  • [5] Multi-modal medical image fusion via multi-dictionary and truncated Huber filtering
    Jie, Yuchan
    Li, Xiaosong
    Tan, Haishu
    Zhou, Fuqiang
    Wang, Gao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [6] Multi-layer, multi-modal medical image intelligent fusion
    Nair, Rekha R.
    Singh, Tripty
    Basavapattana, Abhinandan
    Pawar, Manasa M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42821 - 42847
  • [7] Multi-layer, multi-modal medical image intelligent fusion
    Rekha R. Nair
    Tripty Singh
    Abhinandan Basavapattana
    Manasa M. Pawar
    Multimedia Tools and Applications, 2022, 81 : 42821 - 42847
  • [8] Adaptive decomposition method for multi-modal medical image fusion
    Wang, Jing
    Li, Xiongfei
    Zhang, Yan
    Zhang, Xiaoli
    IET IMAGE PROCESSING, 2018, 12 (08) : 1403 - 1412
  • [9] MULTI-MODAL MEDICAL IMAGE FUSION USING CURVELET ALGORITHM
    Mathiyalagan, P.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 2453 - 2458
  • [10] A Multi-modal Medical Image Fusion Method in Spatial Domain
    Yan, Huibin
    Li, Zhongmin
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 597 - 601