Hyperbolicity, convexity and shock waves in one-dimensional crystalline solids

被引:6
|
作者
Ruggeri, T
Sugiyama, M
机构
[1] Univ Bologna, Res Ctr Appl Math, I-40123 Bologna, Italy
[2] Nagoya Inst Technol, Grad Sch Engn, Nagoya, Aichi 4668555, Japan
来源
关键词
D O I
10.1088/0305-4470/38/20/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a continuum model of one-dimensional anharmonic crystal lattices at finite temperatures, which was derived from a statistical-mechanical model proposed recently, we clarify the classification of its differential system. That is, we determine not only the strict hyperbolicity and convexity regions but also the elliptic and parabolic regions in the space of the state. The melting point is found to be on the boundary of the convexity region. Then we derive the Rankine-Hugoniot relations, and we prove that the admissible shocks are always in the stable region of convexity.
引用
收藏
页码:4337 / 4347
页数:11
相关论文
共 50 条
  • [1] ONE-DIMENSIONAL SHOCK-WAVES IN SOLIDS WITH INTERNAL STATE VARIABLES
    KOSINSKI, W
    [J]. ARCHIVES OF MECHANICS, 1975, 27 (03): : 445 - 458
  • [2] ONE-DIMENSIONAL NONLINEAR MOTIONS IN ELECTROELASTIC SOLIDS - CHARACTERISTICS AND SHOCK-WAVES
    ANI, W
    MAUGIN, GA
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (03): : 277 - 298
  • [3] ONE-DIMENSIONAL SHOCK-WAVES
    BOGAYEVSKY, VN
    POVZNER, AY
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1978, 13 (5-6) : 337 - 349
  • [4] On one-dimensional solitary waves in microstructured solids
    Randruut, Merle
    Braun, Manfred
    [J]. WAVE MOTION, 2010, 47 (04) : 217 - 230
  • [5] Stationary one-dimensional dispersive shock waves
    Kartashov, Yaroslav V.
    Kamchatnov, Anatoly M.
    [J]. OPTICS LETTERS, 2012, 37 (03) : 389 - 391
  • [6] Shock waves in one-dimensional Heisenberg ferromagnets
    Konotop, VV
    Salerno, M
    Takeno, S
    [J]. PHYSICAL REVIEW B, 1998, 58 (22) : 14892 - 14895
  • [7] Hyperbolicity and one-dimensional waves in compressible two-phase flow models
    E. Romenski
    E. F. Toro
    [J]. Shock Waves, 2004, 13 : 473 - 487
  • [8] Hyperbolicity and one-dimensional waves in compressible two-phase flow models
    Romenski, E
    Toro, EF
    [J]. SHOCK WAVES, 2004, 13 (06) : 473 - 487
  • [9] ONE-DIMENSIONAL SOLIDS
    STEVENS, G
    BLOOR, D
    [J]. NEW SCIENTIST, 1977, 76 (1075) : 213 - 215
  • [10] Controllability of shock waves in one-dimensional polariton condensates
    Qi-wen Wang
    Jin-ling Wang
    Wen Wen
    Ji Lin
    Hui-jun Li
    [J]. Communications in Theoretical Physics, 2023, 75 (06) : 3 - 10