Growth in SL3(Z/pZ)

被引:42
|
作者
Helfgott, H. A. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
Cayley graphs; finite groups; generation; diameter; expander graphs; LINEAR-GROUPS; BOUNDS; DIAMETER;
D O I
10.4171/JEMS/267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G D SL3(Z/ pZ), p a prime. Let A be a set of generators of G. Then A grows under the group operation. To be precise: denote by vertical bar S vertical bar the number of elements of a finite set S. Assume vertical bar A vertical bar < vertical bar G vertical bar(1-epsilon) for some epsilon > 0. Then vertical bar A . A . A vertical bar > vertical bar A vertical bar(1+delta), where delta > 0 depends only on epsilon. We will also study subsets A subset of G that do not generate G. Other results on growth and generation follow.
引用
收藏
页码:761 / 851
页数:91
相关论文
共 50 条
  • [1] COHOMOLOGY OF SL3 (Z)
    SOULE, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (05): : 251 - 254
  • [2] Entropy and escape of mass for SL3(Z)\SL3(R)
    Einsiedler, Manfred
    Kadyrov, Shirali
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) : 253 - 288
  • [3] Bounded Orbits of Diagonalizable Flows on SL3(R)/SL3(Z)
    An, Jinpeng
    Guan, Lifan
    Kleinbock, Dmitry
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13623 - 13652
  • [4] COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL3(Z)
    SCHWERMER, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (11): : 817 - 820
  • [5] Boundary and Eisenstein cohomology of SL3(Z)
    Bajpai, Jitendra
    Harder, Guenter
    Horozov, Ivan
    Giusti, Matias Moya
    [J]. MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 199 - 247
  • [6] CO-HOMOLOGY OF SL3(Z)
    SOULE, C
    [J]. TOPOLOGY, 1978, 17 (01) : 1 - 22
  • [7] A prime geodesic theorem for SL3(Z)
    Deitmar, Anton
    Spilioti, Polyxeni
    Gon, Yasuro
    [J]. FORUM MATHEMATICUM, 2019, 31 (05) : 1179 - 1201
  • [8] Growth and generation in SL2(Z/pZ)
    Helfgott, H. A.
    [J]. ANNALS OF MATHEMATICS, 2008, 167 (02) : 601 - 623
  • [9] Entropy and escape of mass for SL3(ℤ)\ SL3(ℝ)
    Manfred Einsiedler
    Shirali Kadyrov
    [J]. Israel Journal of Mathematics, 2012, 190 : 253 - 288
  • [10] On the existence and temperedness of cusp forms for SL3(Z)
    Miller, SD
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 533 : 127 - 169