Vehicular Computation Offloading for Industrial Mobile Edge Computing

被引:60
|
作者
Zhao, Liang [1 ]
Yang, Kaiqi [1 ]
Tan, Zhiyuan [2 ]
Song, Houbing [3 ]
Al-Dubai, Ahmed [2 ]
Zomaya, Albert Y. [4 ]
Li, Xianwei [5 ]
机构
[1] Shenyang Aerosp Univ, Sch Comp Sci, Shenyang 110136, Peoples R China
[2] Edinburgh Napier Univ, Sch Comp, Edinburgh EH10 5DT, Midlothian, Scotland
[3] Embry Riddle Aeronaut Univ, Elect Engn & Comp Sci Dept, Daytona Beach, FL 32114 USA
[4] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
[5] Bengbu Univ, Sch Comp Engn, Bengbu 233000, Peoples R China
关键词
Task analysis; Wireless communication; Servers; Resource management; Energy consumption; Cloud computing; Production; Game theory; industrial vehicular computation offloading; mobile edge computing (MEC); task allocation; unmanned aerial vehicles (UAVs); NETWORKS; ARCHITECTURE; ALLOCATION;
D O I
10.1109/TII.2021.3059640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the limited local computation resource, industrial vehicular computation requires offloading the computation tasks with time-delay sensitive and complex demands to other intelligent devices (IDs) once the data is sensed and collected collaboratively. This article considers offloading partial computation tasks of the industrial vehicles (IVs) to multiple available IDs of the industrial mobile edge computing (MEC), including unmanned aerial vehicles (UAVs), and the fixed-position MEC servers, to optimize the system cost including execution time, energy consumption, and the ID rental price. Moreover, to increase the access probability of IV by the UAVs, the geographical area is divided into small partitions and schedule the UAVs regarding the regional IV density dynamically. A minimum incremental task allocation algorithm is proposed to divide the whole task and assign the divided units for the minimum cost increment each time. Experimental results show the proposed solution can significantly reduce the system cost.
引用
收藏
页码:7871 / 7881
页数:11
相关论文
共 50 条
  • [1] Computation Offloading for Mobile Edge Computing Enabled Vehicular Networks
    Wang, Jun
    Feng, Daquan
    Zhang, Shengli
    Tang, Jianhua
    Quek, Tony Q. S.
    [J]. IEEE ACCESS, 2019, 7 : 62624 - 62632
  • [2] Computation Offloading and Retrieval for Vehicular Edge Computing
    Boukerche, Azzedine
    Soto, Victor
    [J]. ACM Computing Surveys, 2020, 53 (04):
  • [3] Computation Offloading Scheme to Improve QoE in Vehicular Networks with Mobile Edge Computing
    Liu, Qiaorong
    Su, Zhou
    Hui, Yilong
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [4] A Survey of Computation Offloading in Vehicular Edge Computing Networks
    Liu, Lei
    Chen, Chen
    Feng, Jie
    Xiao, Ting-Ting
    Pei, Qing-Qi
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (05): : 861 - 871
  • [5] Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular Networks
    Zhao, Junhui
    Li, Qiuping
    Gong, Yi
    Zhang, Ke
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 7944 - 7956
  • [6] Task migration computation offloading with low delay for mobile edge computing in vehicular networks
    Qiao, Bingxue
    Liu, Chubo
    Liu, Jing
    Hu, Yikun
    Li, Kenli
    Li, Keqin
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (01):
  • [7] Computation Offloading Strategy in Mobile Edge Computing
    Sheng, Jinfang
    Hu, Jie
    Teng, Xiaoyu
    Wang, Bin
    Pan, Xiaoxia
    [J]. INFORMATION, 2019, 10 (06)
  • [8] Learning for Computation Offloading in Mobile Edge Computing
    Dinh, Thinh Quang
    La, Quang Duy
    Quek, Tony Q. S.
    Shin, Hyundong
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (12) : 6353 - 6367
  • [9] Virtual Edge: Exploring Computation Offloading in Collaborative Vehicular Edge Computing
    Cha, Narisu
    Wu, Celimuge
    Yoshinaga, Tsutomu
    Ji, Yusheng
    Yau, Kok-Lim Alvin
    [J]. IEEE ACCESS, 2021, 9 : 37739 - 37751
  • [10] Dynamic Edge Server Placement for Computation Offloading in Vehicular Edge Computing
    Nakrani, Dhruv
    Khuman, Jayesh
    Yadav, Ram Narayan
    [J]. 2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 45 - 50