A fully high-order finite-element simulation of scattering by deep cavities

被引:59
|
作者
Jin, JM
Liu, J
Lou, Z
Liang, CST
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Ctr Comp Electromagnet, Urbana, IL 61801 USA
[2] Lockheed Martin Aeronaut Co, Ft Worth, TX 76101 USA
关键词
electromagnetic scattering; finite element methods; numerical analysis; radar cross sections;
D O I
10.1109/TAP.2003.816354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fully high-order finite element algorithm is presented for simulating electromagnetic scattering by a deep cavity using curvilinear tetrahedral elements. Unlike the previously developed algorithm based on mixed-order triangular prism elements, this new algorithm can significantly suppress numerical dispersion errors in all directions, thus resulting in a more accurate and efficient simulation of complex wave propagation inside a deep cavity. Moreover, the use of tetrahedral elements removes limitations on the modeling of complex cavities imposed by the use of triangular prism elements. Numerical examples and experimental results are presented to demonstrate the advantages of the new algorithm.
引用
收藏
页码:2420 / 2429
页数:10
相关论文
共 50 条
  • [1] A special higher order finite-element method for scattering by deep cavities
    Liu, J
    Jin, JM
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (05) : 694 - 703
  • [2] High-Order Finite-Element Framework for the Efficient Simulation of Multifluid Flows
    Metivet, Thibaut
    Chabannes, Vincent
    Ismail, Mourad
    Prud'homme, Christophe
    [J]. MATHEMATICS, 2018, 6 (10)
  • [3] High-order finite-element analysis of periodic absorbers
    Lou, Z
    Jin, JM
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 37 (03) : 203 - 207
  • [4] HIGH-ORDER LOCAL APPROXIMATIONS TO DERIVATIVES IN FINITE-ELEMENT METHOD
    THOMEE, V
    [J]. MATHEMATICS OF COMPUTATION, 1977, 31 (139) : 652 - 660
  • [6] Adaptive, High-Order Finite-Element Method for Convected Acoustics
    Gabard, G.
    Beriot, H.
    Prinn, A. G.
    Kucukcoskun, K.
    [J]. AIAA JOURNAL, 2018, 56 (08) : 3179 - 3191
  • [7] HIGH-ORDER FINITE-ELEMENT METHODS FOR STEADY VISCOELASTIC FLOWS
    YURAN, F
    CROCHET, MJ
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1995, 57 (2-3) : 283 - 311
  • [8] Finite-Element Boundary Integral Simulation of Transient Electromagnetic Scattering From Multiple Cavities
    Uber, Richard P.
    Wood, Aihua W.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (06) : 3267 - 3272
  • [9] Deep ReLU networks and high-order finite element methods
    Opschoor, Joost A. A.
    Petersen, Philipp C.
    Schwab, Christoph
    [J]. ANALYSIS AND APPLICATIONS, 2020, 18 (05) : 715 - 770
  • [10] Performance Analysis of SIMD vectorization of High-Order Finite-Element kernels
    Sornet, Gauthier
    Jubertie, Sylvain
    Dupros, Fabrice
    De Martin, Florent
    Limet, Sebastien
    [J]. PROCEEDINGS 2018 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2018, : 423 - 430