Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis

被引:75
|
作者
Chen, Gang [1 ]
Glen, Daniel R. [1 ]
Saad, Ziad S. [1 ]
Hamilton, J. Paul [2 ]
Thomason, Moriah E. [2 ]
Gotlib, Ian H. [2 ]
Cox, Robert W. [1 ]
机构
[1] NIMH NIH HHS, Bethesda, MD USA
[2] Stanford Univ, Dept Psychol, Mood & Anxiety Disorders Lab, Stanford, CA 94305 USA
关键词
Connectivity analysis; Vector autoregression (VAR); Structural equation modeling (SEM); Structural vector autoregression (SVAR); RESTING-STATE FMRI; GRANGER CAUSALITY; MAJOR DEPRESSION; NEURAL-NETWORKS; PATH-ANALYSIS; CONNECTIVITY; BRAIN; CORTEX;
D O I
10.1016/j.compbiomed.2011.09.004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and their interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoid some prevalent pitfalls that can occur when VAR and SEM are utilized separately. Published by Elsevier Ltd.
引用
收藏
页码:1142 / 1155
页数:14
相关论文
共 50 条
  • [1] Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling
    Price, Larry R.
    Laird, Angela R.
    Fox, Peter T.
    Ingham, Roger J.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2009, 16 (01) : 147 - 162
  • [2] Modeling Monetary Policy Transmission in Acceding Countries: Vector Autoregression Versus Structural Vector Autoregression
    Elbourne, Adam
    de Haan, Jakob
    [J]. EMERGING MARKETS FINANCE AND TRADE, 2009, 45 (02) : 4 - 20
  • [3] Reliability and validity of structural equation modeling applied to neuroimaging data:: A simulation study
    Boucard, Aurelie
    Marchand, Alain
    Nogues, Xavier
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2007, 166 (02) : 278 - 292
  • [4] VECTOR AUTOREGRESSION MODELING AND FORECASTING
    HOLDEN, K
    [J]. JOURNAL OF FORECASTING, 1995, 14 (03) : 159 - 166
  • [5] Path and Directionality Discovery in Individual Dynamic Models: A Regularized Unified Structural Equation Modeling Approach for Hybrid Vector Autoregression
    Ye, Ai
    Gates, Kathleen M.
    Henry, Teague Rhine
    Luo, Lan
    [J]. PSYCHOMETRIKA, 2021, 86 (02) : 404 - 441
  • [6] Path and Directionality Discovery in Individual Dynamic Models: A Regularized Unified Structural Equation Modeling Approach for Hybrid Vector Autoregression
    Ai Ye
    Kathleen M. Gates
    Teague Rhine Henry
    Lan Luo
    [J]. Psychometrika, 2021, 86 : 404 - 441
  • [7] A Structural Vector Autoregression Model for Monetary Policy Analysis in India
    Paramanik, Rajendra
    Kamaiah, Bandi
    [J]. MARGIN-JOURNAL OF APPLIED ECONOMIC RESEARCH, 2014, 8 (04): : 401 - 429
  • [8] Modeling mortality with a Bayesian vector autoregression
    Njenga, Carolyn Ndigwako
    Sherris, Michael
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2020, 94 : 40 - 57
  • [9] Structural equation modeling in applying for the crosscultural data analysis
    Little, TD
    Gordeeva, TO
    [J]. PSIKHOLOGICHESKII ZHURNAL, 1997, 18 (04) : 96 - +
  • [10] Modeling the electricity generation dynamics of Ghana: a structural vector autoregression regression approach
    Atuahene, Sampson Agyapong
    Sheng, Qian Xu
    [J]. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023,