Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging

被引:20
|
作者
Gao, Yuan [1 ,2 ]
Harder, Ross [3 ]
Southworth, Stephen H. [1 ]
Guest, Jeffrey R. [4 ]
Huang, Xiaojing [2 ]
Yan, Zijie [5 ,6 ]
Ocola, Leonidas E. [4 ]
Yifat, Yuval [5 ]
Sule, Nishant [5 ]
Ho, Phay J. [1 ]
Pelton, Matthew [7 ]
Scherer, Norbert F. [4 ,5 ,8 ]
Young, Linda [1 ,5 ,9 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[3] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[5] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[6] Clarkson Univ, Dept Chem & Biomol Engn, Potsdam, NY 13699 USA
[7] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA
[8] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA
[9] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
关键词
optical tweezers; coherent X-ray diffraction imaging; microfluidic; optical trapping; nanoscience; TWEEZERS; SOFT; ELECTRODYNAMICS; CRYSTALLOGRAPHY; GENERATION; PARTICLES; STRAIN; WHOLE;
D O I
10.1073/pnas.1720785116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical trapping has been implemented in many areas of physics and biology as a noncontact sample manipulation technique to study the structure and dynamics of nano-andmesoscale objects. It provides a unique approach for manipulating microscopic objects without inducing undesired changes in structure. Combining optical trapping with hard X-ray microscopy techniques, such as coherent diffraction imaging and crystallography, provides a nonperturbing environment where electronic and structural dynamics of an individual particle in solution can be followed in situ. It was previously shown that optical trapping allows the manipulation of micrometer-sized objects for Xray fluorescence imaging. However, questions remain over the ability of optical trapping to position objects for X-ray diffraction measurements, which have stringent requirements for angular stability. Our work demonstrates that dynamic holographic optical tweezers are capable of manipulating single micrometer-scale anisotropic particles in a microfluidic environment with the precision and stability required for X-ray Bragg diffraction experiments-thus functioning as an "optical goniometer." The methodology can be extended to a variety of X-ray experiments and the Bragg coherent diffractive imaging of individual particles in solution, as demonstrated here, will be markedly enhanced with the advent of brighter, coherent X-ray sources.
引用
收藏
页码:4018 / 4024
页数:7
相关论文
共 50 条
  • [1] Three-Dimensional Coherent X-Ray Diffraction Microscopy
    Ian K. Robinson
    Jianwei Miao
    [J]. MRS Bulletin, 2004, 29 : 177 - 181
  • [2] Three-dimensional coherent x-ray diffraction microscopy
    Robinson, IK
    Miao, JW
    [J]. MRS BULLETIN, 2004, 29 (03) : 177 - 181
  • [3] Coherent three-dimensional X-ray cryo-imaging
    Robinson, Ian
    [J]. IUCRJ, 2015, 2 : 477 - 478
  • [4] Three-dimensional coherent X-ray diffraction imaging via deep convolutional neural networks
    Wu, Longlong
    Yoo, Shinjae
    Suzana, Ana F.
    Assefa, Tadesse A.
    Diao, Jiecheng
    Harder, Ross J.
    Cha, Wonsuk
    Robinson, Ian K.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [5] Framework for three-dimensional coherent diffraction imaging by focused beam x-ray Bragg ptychography
    Hruszkewycz, Stephan O.
    Holt, Martin V.
    Tripathi, Ash
    Maser, Joerg
    Fuoss, Paul H.
    [J]. OPTICS LETTERS, 2011, 36 (12) : 2227 - 2229
  • [6] Three-dimensional coherent X-ray diffraction imaging via deep convolutional neural networks
    Longlong Wu
    Shinjae Yoo
    Ana F. Suzana
    Tadesse A. Assefa
    Jiecheng Diao
    Ross J. Harder
    Wonsuk Cha
    Ian K. Robinson
    [J]. npj Computational Materials, 7
  • [7] Three-dimensional imaging of dislocations by X-ray diffraction laminography
    Haenschke, D.
    Helfen, L.
    Altapova, V.
    Danilewsky, A.
    Baumbach, T.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [8] Atomistic three-dimensional coherent x-ray imaging of nonbiological systems
    Ho, Phay J.
    Knight, Chris
    Tegze, Miklos
    Faigel, Gyula
    Bostedt, C.
    Young, L.
    [J]. PHYSICAL REVIEW A, 2016, 94 (06)
  • [9] Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms
    Barty, A.
    Marchesini, S.
    Chapman, H. N.
    Cui, C.
    Howells, M. R.
    Shapiro, D. A.
    Minor, A. M.
    Spence, J. C. H.
    Weierstall, U.
    Ilavsky, J.
    Noy, A.
    Hau-Riege, S. P.
    Artyukhin, A. B.
    Baumann, T.
    Willey, T.
    Stolken, J.
    van Buuren, T.
    Kinney, J. H.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (05)
  • [10] X-ray coherent diffraction imaging with an objective lens: Towards three-dimensional mapping of thick polycrystals
    Pedersen, A. F.
    Chamard, V
    Detlefs, C.
    Zhou, T.
    Carbone, D.
    Poulsen, H. F.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):