Hybrid Second Order Schemes for Scalar Balance Laws

被引:20
|
作者
Donat, R. [1 ]
Martinez-Gavara, A. [2 ]
机构
[1] Univ Valencia, Dept Matemat Aplicada, E-46100 Burjassot, Spain
[2] Univ Seville, Dept Matemat Aplicada 1, ETS Arquitectura, E-41012 Seville, Spain
关键词
Well-balanced schemes; C-property; Source terms; HYPERBOLIC CONSERVATION-LAWS; RESIDUAL DISTRIBUTION SCHEMES; HIGH-RESOLUTION SCHEMES; SOURCE TERMS; EQUATIONS;
D O I
10.1007/s10915-010-9404-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we explore the use of the flux-limiting technology, developed in the context of homogeneous conservation laws, in order to curb the oscillations that occur as a consequence of the plain use of data-independent second order schemes for balance laws. When trying to design high order schemes for inhomogeneous conservation laws, well balancing is one important issue that must be taken into account. The proper balance between the discretizations of the flux and the source terms is ensured by basing the design on the so-called 'homogeneous form' of the balance law, postulated by Gascn and Corberan (J. Comput. Phys. 172(1):261-297, 2001).
引用
收藏
页码:52 / 69
页数:18
相关论文
共 50 条
  • [1] Hybrid Second Order Schemes for Scalar Balance Laws
    R. Donat
    A. Martinez-Gavara
    [J]. Journal of Scientific Computing, 2011, 48 : 52 - 69
  • [2] Second Order Implicit Schemes for Scalar Conservation Laws
    Wagner, Lisa
    Lang, Jens
    Kolb, Oliver
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 33 - 41
  • [3] Second-order schemes based on a relaxation system for scalar and systems of conservation laws
    Chalons, Christophe
    Girardin, Mathieu
    [J]. Applied Mathematics and Computation, 2025, 490
  • [4] A new class of uniformly second order accurate difference schemes for 2D scalar conservation laws
    Cheng, J
    Dai, JZ
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (04) : 311 - 318
  • [5] Monotone First-Order Weighted Schemes for Scalar Conservation Laws
    Jerez, Silvia
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) : 2133 - 2145
  • [6] Second order scheme for scalar conservation laws with discontinuous flux
    Adimurthi
    Kumar, Sudarshan K.
    Gowda, G. D. Veerappa
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 80 : 46 - 64
  • [7] High order well balanced schemes for systems of balance laws
    Russo, Giovanni
    Khe, Alexander
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 919 - 928
  • [8] SECOND-ORDER CONVERGENCE OF MONOTONE SCHEMES FOR CONSERVATION LAWS
    Fjordholm, Ulrik S.
    Solem, Susanne
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1920 - 1945
  • [9] Higher Order Compact Implicit Finite Volume Schemes for Scalar Conservation Laws
    Zakova, Dagmar
    Frolkovic, Peter
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL II, HYP2022, 2024, 35 : 221 - 231
  • [10] On maximum-principle-satisfying high order schemes for scalar conservation laws
    Zhang, Xiangxiong
    Shu, Chi-Wang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) : 3091 - 3120