With the development of the times, the energy density of cathodes can no longer meet the requirement of the society, which has greatly limited the commercialization process of Ni-rich cathodes. Doping combined with coating is a perfect approach to improve the performance of Ni-rich cathodes. In this paper, La was used as a modified element to realize doping in the layered host structure as well as La2O3 coating on the surface. To further enhance the interface stability of LiNi0.8Co0.1Mn0.1O2, F was also employed to modify the surface, so as to change the coating layer from oxide (La2O3) to fluoride (LaF3), which further improved the surface stability. Additionally, a series of testing instruments, including XRD, EDS mapping, and HRTEM, were employed, which suggested that a small amount of La was introduced into the host structure as a pillar to the stable layered structure, and there was an uniform LaF3 coating layer covered on the Ni-rich cathodes. As a result, the electrochemical performance of the cathodes was greatly improved, with the capacity retention of 86.63% and 80.79% after 200 cycles at 1 C rate and 300 cycles at 8 C rate, respectively; besides, the kinetics of lithium diffusion was also improved.