Improving the performance of traffic sign detection using blob tracking

被引:4
|
作者
Soetedjo, Aryuanto [1 ]
Yamada, Koichi [2 ]
机构
[1] Multimedia Univ, Cyberjaya 63100, Selangor, Malaysia
[2] Nagaoka Univ Technol, Niigata 9402188, Japan
来源
IEICE ELECTRONICS EXPRESS | 2007年 / 4卷 / 21期
关键词
traffic sign detection; traffic sign tracking; two-layer blobs; blob tracking; ring-partitioned matching;
D O I
10.1587/elex.4.684
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new approach for tracking circular traffic signs from image sequences to improve the performance of traffic sign detection, by reducing search region and suppressing misdetection caused by temporal occlusion or poor quality of image. Our proposed tracking, called two-layered blobs tracking, does not require an accurate model of the fixed object-moving camera system, which is essential in the Kalman-Filter tracking. The experimental results show that the proposed approach could track the circular tra. c signs from a moving camera effectively, without any restrictions on speed and movement of the vehicle, and camera installation, thus it is easy to be implemented in real situation.
引用
收藏
页码:684 / 689
页数:6
相关论文
共 50 条
  • [1] IMPROVING TRAFFIC SIGN DETECTION BY COMBINING MSER AND LUCAS KANADE TRACKING
    Soetedjo, Aryuanto
    Somawirata, I. Komang
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (02): : 653 - 665
  • [2] Kernel-based Tracking for Improving Sign Detection Performance
    Lee, JongHo
    Seo, Young-Woo
    Wettergreen, David
    [J]. 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 4388 - 4393
  • [3] Traffic Sign Recognition using Blob Analysis and Template Matching
    Athrey, Kishan S.
    Kambalur, Bharat M.
    Kumar, Krishna K.
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER & COMMUNICATION TECHNOLOGY (ICCCT-2015), 2015, : 219 - 222
  • [4] TRAFFIC SIGN DETECTION AND TRACKING USING ROBUST 3D ANALYSIS
    Marinas, Javier
    Salgado, Luis
    Arrospide, Jon
    Camplani, Massimo
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON EMERGING SECURITY TECHNOLOGIES (EST), 2012, : 78 - 81
  • [5] Coupled Detection, Association and Tracking for Traffic Sign Recognition
    Boumediene, Mohammed
    Lauffenburger, Jean-Philippe
    Daniel, Jeremie
    Cudel, Christophe
    [J]. 2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 1402 - 1407
  • [6] A system for traffic sign detection, tracking, and recognition using color, shape, and motion information
    Bahlmann, C
    Zhu, Y
    Ramesh, V
    Pellkofer, M
    Koehler, T
    [J]. 2005 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2005, : 255 - 260
  • [7] Traffic Sign Detection from Video: A Fast Approach with Tracking
    Wang, Dongdong
    Hou, Xinwen
    Liu, Cheng-Lin
    [J]. PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 96 - 100
  • [8] Enhanced YOLO Network for Improving the Efficiency of Traffic Sign Detection
    Cui, Yang
    Guo, Dong
    Yuan, Hao
    Gu, Hengzhi
    Tang, Hongbo
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [9] Hand Detection and Tracking Using the Skeleton of the Blob for Medical Rehabilitation Applications
    Gil-Jimenez, Pedro
    Losilla-Lopez, Beatriz
    Torres-Cueco, Rafael
    Campilho, Aurelio
    Lopez-Sastre, Roberto
    [J]. IMAGE ANALYSIS AND RECOGNITION, PT II, 2012, 7325 : 130 - 137
  • [10] Traffic Sign Detection and Recognition Using OpenCV
    Shopa, P.
    Sumitha, N.
    Patra, P. S. K.
    [J]. 2014 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2014,