Overflow handling in inner-product processors

被引:0
|
作者
Elguibaly, F
Rayhan, A
机构
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Several DSP applications demand high speed inner-product processors (IPP). Most current implementations of IPP use the multiply-accumulate (MAC) concept to perform the IP operations. Rather than using MAC accumulate to perform the IP operation, we show two superioir designs, MIPP and CSIPP, that outperform the standard implementations. Speed imporevement ratio is estimated to he between 2 to 4 for both designs. This paper also presents a new technique to detect and correct overflow occurance in MIPP and CSIPP.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [1] Overflow handling in inner-product processors
    Elguibaly, F
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2000, 47 (10) : 1086 - 1090
  • [2] CONSTANT-TIME INNER-PRODUCT AND MATRIX COMPUTATIONS ON PERMUTATION NETWORK PROCESSORS
    LIN, MB
    ORUC, AY
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1994, 43 (12) : 1429 - 1434
  • [3] Registered (Inner-Product) Functional Encryption
    Francati, Danilo
    Friolo, Daniele
    Maitra, Monosij
    Malavolta, Giulio
    Rahimi, Ahmadreza
    Venturi, Daniele
    [J]. ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT V, 2023, 14442 : 98 - 133
  • [5] Inner-product and out-product of Vague set
    Tang, Zhi-gang
    Liang, Jia-rong
    Li, Shi-yong
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1484 - 1487
  • [6] ON INNER-PRODUCT KERNELS OF HIGH DIMENSIONAL DATA
    Liao, Zhenyu
    Couillet, Romain
    [J]. 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 579 - 583
  • [7] EFFICIENT SERIAL PARALLEL INNER-PRODUCT COMPUTATION
    SMITH, SG
    [J]. ELECTRONICS LETTERS, 1986, 22 (14) : 750 - 752
  • [8] Inner-product intuition is far from universal
    Plum, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (07): : 672 - 673
  • [9] REDUCTION OF INNER-PRODUCT REPRESENTATIONS OF UNITARY GROUPS
    NIKAM, RS
    DINESHA, KV
    SARMA, CR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (02) : 233 - 238
  • [10] A MATRIX EXTENSION OF WINOGRAD INNER-PRODUCT ALGORITHM
    ANDERSON, N
    MANLEY, D
    [J]. THEORETICAL COMPUTER SCIENCE, 1994, 131 (02) : 475 - 477