Divergences on Symmetric Cones and Medians

被引:1
|
作者
Kum, Sangho [1 ]
Lim, Yongdo [2 ]
Yun, Sangwoon [3 ]
机构
[1] Chungbuk Natl Univ, Dept Math Educ, Cheongju 28644, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Dept Math Educ, Seoul 03722, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2022年 / 26卷 / 04期
基金
新加坡国家研究基金会;
关键词
symmetric cone; Euclidean Jordan algebra; fidelity; divergence; median; gradient projection method; INFORMATION GEOMETRY; DISTANCE;
D O I
10.11650/tjm/220106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with divergences on the Cartan-Hadamard Riemannian manifold of symmetric cones, self-dual homogeneous cones in Euclidean spaces, and related optimization problems. We introduce a parameterized version of fidelity on symmetric cones, namely sandwiched quasi-relative entropies, and construct a one -parameter family of divergences based on these entropies. We consider the median minimization problem of finite points over these divergences and establish existence and uniqueness of minimizer. The global linear rate convergence of a gradient projec-tion algorithm for solving the median minimization problem is analyzed based on the derived upper bound of the condition number of the Hessian function.
引用
收藏
页码:867 / 886
页数:20
相关论文
共 50 条
  • [1] REGULARIZED MEDIANS ON SYMMETRIC CONES
    Kum, Sangho
    Yao, Jen-Chih
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (03): : 49 - 62
  • [2] REGULARIZED MEDIANS ON SYMMETRIC CONES
    Kum, Sangho
    Yao, Jen-Chih
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 49 - 62
  • [3] Symmetric products as cones
    Illanes, Alejandro
    Martinez-de-la-Vega, Veronica
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2017, 228 : 36 - 46
  • [4] Loos symmetric cones
    Jimmie Lawson
    [J]. Positivity, 2019, 23 : 1225 - 1243
  • [5] Loos symmetric cones
    Lawson, Jimmie
    [J]. POSITIVITY, 2019, 23 (05) : 1225 - 1243
  • [6] Finsler metrics on symmetric cones
    Yongdo Lim
    [J]. Mathematische Annalen, 2000, 316 : 379 - 389
  • [7] Symmetric stable processes in cones
    Bañuelos, R
    Bogdan, K
    [J]. POTENTIAL ANALYSIS, 2004, 21 (03) : 263 - 288
  • [8] NO DICE THEOREM ON SYMMETRIC CONES
    Kum, Sangho
    Lee, Hosoo
    Lim, Yongdo
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 1967 - 1982
  • [9] Affine Processes on Symmetric Cones
    Christa Cuchiero
    Martin Keller-Ressel
    Eberhard Mayerhofer
    Josef Teichmann
    [J]. Journal of Theoretical Probability, 2016, 29 : 359 - 422
  • [10] Geometric means on symmetric cones
    Y. Lim
    [J]. Archiv der Mathematik, 2000, 75 : 39 - 45