We present a numerical method for solving Poisson's equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as a cell-centered quantity, even when those centers are outside the domain. Cells that contain a portion of the domain boundary use conservative differencing of second-order accurate fluxes on each cell volume. The calculation of the boundary flux ensures that the conditioning of the matrix is relatively unaffected by small cell volumes. This allows us to use multigrid iterations with a simple point relaxation strategy. We have combined this with an adaptive mesh refinement (AMR) procedure. We provide evidence that the algorithm is second-order accurate on various exact solutions and compare the adaptive and nonadaptive calculations. (C) 1998 Academic Press.
机构:
Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USALawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA
McCorquodale, P
Colella, P
论文数: 0引用数: 0
h-index: 0
机构:Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA
Colella, P
Johansen, H
论文数: 0引用数: 0
h-index: 0
机构:Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA
Crockett, R. K.
Colella, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA
Colella, P.
Graves, D. T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA