COUNTING CUSPED HYPERBOLIC 3-MANIFOLDS THAT BOUND GEOMETRICALLY

被引:2
|
作者
Kolpakov, Alexander [1 ]
Riolo, Stefano [1 ]
机构
[1] Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
基金
瑞士国家科学基金会;
关键词
3-manifold; 4-manifold; hyperbolic geometry; cobordism; geometric boundary; POLYHEDRA; MANIFOLDS;
D O I
10.1090/tran/7883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of isometry classes of cusped hyperbolic 3-manifolds that bound geometrically grows at least super-exponentially with their volume, both in the arithmetic and non-arithmetic settings.
引用
收藏
页码:229 / 247
页数:19
相关论文
共 50 条
  • [1] MANY CUSPED HYPERBOLIC 3-MANIFOLDS DO NOT BOUND GEOMETRICALLY
    Kolpakov, Alexander
    Reid, Alan W.
    Riolo, Stefano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2233 - 2243
  • [2] A census of cusped hyperbolic 3-manifolds
    Callahan, PJ
    Hildebrand, MV
    Weeks, JR
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 321 - 332
  • [3] Geodesic knots in cusped hyperbolic 3-manifolds
    Kuhlmann, Sally M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2151 - 2162
  • [4] Geometrically tame hyperbolic 3-manifolds
    Canary, Richard D.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [5] The eta-invariants of cusped hyperbolic 3-manifolds
    Meyerhoff, R
    Ouyang, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (02): : 204 - 213
  • [6] The panted cobordism groups of cusped hyperbolic 3-manifolds
    Sun, Hongbin
    JOURNAL OF TOPOLOGY, 2022, 15 (03) : 1580 - 1634
  • [7] On minimal ideal triangulations of cusped hyperbolic 3-manifolds
    Jaco, William
    Rubinstein, Hyam
    Spreer, Jonathan
    Tillmann, Stephan
    JOURNAL OF TOPOLOGY, 2020, 13 (01) : 308 - 342
  • [8] The orientable cusped hyperbolic 3-manifolds of minimum volume
    Chun Cao
    G. Robert Meyerhoff
    Inventiones mathematicae, 2001, 146 : 451 - 478
  • [9] VOLUMES OF N-CUSPED HYPERBOLIC 3-MANIFOLDS
    ADAMS, CC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 38 : 555 - 565
  • [10] The orientable cusped hyperbolic 3-manifolds of minimum volume
    Cao, C
    Meyerhoff, GR
    INVENTIONES MATHEMATICAE, 2001, 146 (03) : 451 - 478