Quantum superposition inspired spiking neural network

被引:15
|
作者
Sun, Yinqian [1 ,4 ]
Zeng, Yi [1 ,2 ,3 ,4 ,5 ]
Zhang, Tielin [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Artifidal Intelligence, Beijing 100190, Peoples R China
关键词
PERCEPTRON;
D O I
10.1016/j.isci.2021.102880
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite advances in artificial intelligence models, neural networks still cannot achieve human performance, partly due to differences in how information is encoded and processed compared with human brain. Information in an artificial neural network (ANN) is represented using a statistical method and processed as a fitting function, enabling handling of structural patterns in image, text, and speech processing. However, substantial changes to the statistical characteristics of the data, for example, reversing the background of an image, dramatically reduce the performance. Here, we propose a quantum superposition spiking neural network (QS-SNN) inspired by quantum mechanisms and phenomena in the brain, which can handle reversal of image background color. The QS-SNN incorporates quantum theory with brain-inspired spiking neural network models from a computational perspective, resulting in more robust performance compared with traditional ANN models, especially when processing noisy inputs. The results presented here will inform future efforts to develop brain-inspired artificial intelligence.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A quantum-inspired online spiking neural network for time-series predictions
    Yan, Fei
    Liu, Wenjing
    Dong, Fangyan
    Hirota, Kaoru
    [J]. NONLINEAR DYNAMICS, 2023, 111 (16) : 15201 - 15213
  • [2] A quantum-inspired online spiking neural network for time-series predictions
    Fei Yan
    Wenjing Liu
    Fangyan Dong
    Kaoru Hirota
    [J]. Nonlinear Dynamics, 2023, 111 : 15201 - 15213
  • [3] Hippocampus-Inspired Spiking Neural Network on FPGA
    Mokhtar, Maizura
    Halliday, David M.
    Tyrrell, Andy M.
    [J]. EVOLVABLE SYSTEMS: FROM BIOLOGY TO HARDWARE, PROCEEDINGS, 2008, 5216 : 362 - 371
  • [4] ASIC Implementation Of Biologically Inspired Spiking Neural Network
    Rajput, Gunjan
    Raut, Gopal
    Khan, Sajid
    Gupta, Neha
    Behor, Ankur
    Vishvakarma, Santosh Kumar
    [J]. 2019 9TH INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY: SIGNAL AND INFORMATION PROCESSING (ICETET-SIP-19), 2019,
  • [5] HMSNN: Hippocampus inspired Memory Spiking Neural Network
    Zhang, Tielin
    Zeng, Yi
    Zhao, Dongcheng
    Wang, Liwei
    Zhao, Yuxuan
    Xu, Bo
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2301 - 2306
  • [6] A biologically inspired spiking neural network for sound source lateralization
    Voutsas, Kyriakos
    Adamy, Juergen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (06): : 1785 - 1799
  • [7] Biologically Inspired Agent System Based on Spiking Neural Network
    Dzienkowski, Bartlomiej Jozef
    Markowska-Kaczmar, Urszula
    [J]. AGENT AND MULTI-AGENT SYSTEMS: TECHNOLOGIES AND APPLICATIONS, PT II, PROCEEDINGS, 2010, 6071 : 110 - 119
  • [8] A biologically inspired spiking neural network for sound localisation by the inferior colliculus
    Liu, Jindong
    Erwin, Harry
    Wermter, Stefan
    Elsaid, Mahmoud
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 396 - 405
  • [9] Bio-Inspired Deep Spiking Neural Network for Image Classification
    Li, Jingling
    Hu, Weitai
    Yuan, Ye
    Huo, Hong
    Fang, Tao
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 294 - 304
  • [10] Brain-Inspired Spiking Neural Network Using Superconducting Devices
    Zhang, Huilin
    Gang, Chen
    Xu, Chen
    Gong, Guoliang
    Lu, Huaxiang
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (01): : 271 - 277