Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids

被引:55
|
作者
Sladek, J [1 ]
Sladek, V
Zhang, C
Schanz, M
机构
[1] Slovak Acad Sci, Inst Construct & Architecture, Bratislava 84503, Slovakia
[2] Univ Siegen, Dept Civil Engn, D-57068 Siegen, Germany
[3] Graz Univ Technol, Inst Appl Mech, A-8010 Graz, Austria
关键词
meshless method; local weak form; correspondence principle; moving least squares interpolation; Laplace transform; functionally graded materials; viscoelasticity;
D O I
10.1007/s00466-005-0715-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of quasi-static and transient dynamic problems in two-dimensional (2-D) nonhomogeneous linear viscoelastic media. A unit step function is used as the test functions in the local weak form. It is leading to local boundary integral equations (LBIEs) involving only a domain-integral in the case of transient dynamic problems. The correspondence principle is applied to such nonhomogeneous linear viscoelastic solids where relaxation moduli are separable in space and time variables. Then, the LBIEs are formulated for the Laplace-transformed viscoelastic problem. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-D problems. The moving least squares (MLS) method is used for approximation of physical quantities in LBIEs.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [1] Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids
    J. Sladek
    V. Sladek
    Ch. Zhang
    M. Schanz
    [J]. Computational Mechanics, 2006, 37 : 279 - 289
  • [2] Application of meshless local Petrov-Galerkin (MLPG) method to elastodynamic problems in continuously nonhomogeneous solids
    Sladek, J
    Sladek, V
    Zhang, CZ
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2003, 4 (06): : 637 - 647
  • [3] Application of meshless local Petrov-Galerkin (MLPG) method to elastodynamic problems in continuously nonhomogeneous solids
    Sladek, Jan
    Sladek, Vladimir
    Zhang, Chuanzeng
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2003, 4 (06): : 637 - 647
  • [4] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [5] Meshless local petrov-galerkin method for linear coupled thermoelastic analysis
    Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia
    不详
    不详
    [J]. CMES Comput. Model. Eng. Sci., 2006, 1 (57-68):
  • [6] Meshless local Petrov-Galerkin method for linear coupled thermoelastic analysis
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Tan, C. L.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 16 (01): : 57 - 68
  • [7] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    [J]. COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [8] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [9] On the improvements and applications of the Meshless Local Petrov-Galerkin method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    [J]. Tongji Daxue Xuebao, 2006, 5 (603-606):
  • [10] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    [J]. Computers, Materials and Continua, 2006, 4 (02): : 109 - 117