Random walks on weighted, oriented percolation clusters

被引:0
|
作者
Miller, Katja [1 ]
机构
[1] Tech Univ Munich, Boltzmannstr 3, D-85748 Garching, Germany
关键词
Oriented percolation; random walks in random environment; central limit theorem; mixing conditions; SURE INVARIANCE-PRINCIPLE; CENTRAL-LIMIT-THEOREM; SPACE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a weighted random walk on the backbone of an oriented percolation cluster. We determine necessary conditions on the weights for Brownian scaling limits under the annealed and the quenched law. This model is a random walk in dynamic random environment (RWDRE), where the environment is mixing, non-Markovian and not elliptic. We provide a generalization of results obtained previously by Birkner et al. (2013).
引用
收藏
页码:53 / 77
页数:25
相关论文
共 50 条
  • [1] Random walks on weighted, oriented percolation clusters (vol 13, pg 53, 2016)
    Miller, Katja
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 173 - 175
  • [2] Random walks on supercritical percolation clusters
    Barlow, MT
    [J]. ANNALS OF PROBABILITY, 2004, 32 (04): : 3024 - 3084
  • [3] RANDOM-WALKS ON DIRECTED PERCOLATION CLUSTERS
    VICSEK, T
    KERTESZ, J
    CSERTI, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (04): : L189 - L193
  • [4] RANDOM-WALKS ON INVASION PERCOLATION CLUSTERS
    MCCARTHY, JF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (16): : 3379 - 3384
  • [5] RANDOM-WALKS ON PERCOLATION CLUSTERS AT THE PERCOLATION-THRESHOLD
    SAHIMI, M
    JERAULD, GR
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (29): : 1043 - 1050
  • [6] Directed random walks on directed percolation clusters
    Wang, XH
    Perlsman, E
    Havlin, S
    [J]. PHYSICAL REVIEW E, 2003, 67 (05):
  • [7] Quenched invariance principles for random walks on percolation clusters
    Mathieu, P.
    Piatnitski, A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2085): : 2287 - 2307
  • [8] ON THE EIGENSPACES OF LAMPLIGHTER RANDOM WALKS AND PERCOLATION CLUSTERS ON GRAPHS
    Lehner, Franz
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) : 2631 - 2637
  • [9] RANDOM-WALKS ON FRACTAL STRUCTURES AND PERCOLATION CLUSTERS
    RAMMAL, R
    TOULOUSE, G
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1983, 44 (01): : L13 - L22
  • [10] Transience and Recurrence of Random Walks on Percolation Clusters in an Ultrametric Space
    D. A. Dawson
    L. G. Gorostiza
    [J]. Journal of Theoretical Probability, 2018, 31 : 494 - 526