Automatic Identification of Window Regions on Indoor Point Clouds Using LiDAR and Cameras

被引:0
|
作者
Zhang, Richard [1 ]
Zakhor, Avideh [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an algorithm to automatically identify window regions on exterior facing facades of buildings using interior 3D point cloud resulting from an ambulatory backpack sensor system, outfitted with multiple LiDAR sensors and cameras. We develop a set of discriminative features for the task, namely visual brightness, infrared opaqueness, and an occlusion indicator, within a Markov Random Field (MRF) framework to provide structured prediction for window or glass regions. A preprocessing classifier is trained on the features to produce node potentials, and large margin parameter training is used to boost performance. Our algorithm has been trained on data taken at the 3rd floor of Cory Hall at UC Berkeley, with a total facade area of 269.1 m(2), and has been tested on walls taken on the 2nd floor of Cory Hall, a Walgreens, and an office building in San Francisco, with a total exterior facade area of 454.6 m(2). Window regions are successfully identified with 85.5% F-1-score and 94.2% accuracy.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 50 条
  • [1] WINDOW DETECTION IN SPARSE POINT CLOUDS USING INDOOR POINTS
    Tuttas, S.
    Stilla, U.
    [J]. PIA11: PHOTOGRAMMETRIC IMAGE ANALYSIS, 2011, 2011, 38-3 (W22): : 131 - 136
  • [2] Automatic detection to inventory road slopes using open LiDAR point clouds
    Rua, Erik
    Nunez-Seoane, Anton
    Arias, Pedro
    Martinez-Sanchez, Joaquin
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 118
  • [3] Indoor Map Generation from Multiple LIDAR Point Clouds
    Yoshisada, Hikaru
    Yamada, Yuma
    Hiromori, Akihito
    Yamaguchi, Hirozumi
    Higashino, Teruo
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2018), 2018, : 73 - 80
  • [4] Colourising Point Clouds Using Independent Cameras
    Vechersky, Pavel
    Cox, Mark
    Borges, Paulo
    Lowe, Thomas
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04): : 3575 - 3582
  • [5] AUTOMATIC MARKERLESS REGISTRATION OF MOBILE LIDAR POINT-CLOUDS
    Lu, Min
    Guo, Yulan
    Zhang, Jun
    Wan, Jianwei
    Li, Jonathan
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [6] Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds
    Lucas, Chris
    Bouten, Willem
    Koma, Zsofia
    Kissling, W. Daniel
    Seijmonsbergen, Arie C.
    [J]. REMOTE SENSING, 2019, 11 (03)
  • [7] Automatic planar shape segmentation from indoor point clouds
    Shui, Wuyang
    Liu, Jin
    Ren, Pu
    Maddock, Steve
    Zhou, Mingquan
    [J]. PROCEEDINGS VRCAI 2016: 15TH ACM SIGGRAPH CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY, 2016, : 363 - 372
  • [8] Automatic Extraction of Indoor Structural Information from Point Clouds
    Cheng, Dongyang
    Zhang, Junchao
    Zhao, Dangjun
    Chen, Jianlai
    Tian, Di
    [J]. REMOTE SENSING, 2021, 13 (23)
  • [9] Detection and automatic identification of loess sinkholes from the perspective of LiDAR point clouds and deep learning algorithm
    Jiang, Zongda
    Hu, Sheng
    Deng, Hao
    Wang, Ninglian
    Zhang, Fanyu
    Wang, Lin
    Wu, Songbai
    Wang, Xingang
    Cao, Zhengwen
    Chen, Yixian
    Li, Sisi
    [J]. GEOMORPHOLOGY, 2024, 465
  • [10] New morphological features for urban tree species identification using LiDAR point clouds
    Guo, Yasong
    Zhang, Hongsheng
    Li, Qiaosi
    Lin, Yinyi
    Michalski, Joseph
    [J]. URBAN FORESTRY & URBAN GREENING, 2022, 71