On the selection of pairing-friendly groups

被引:0
|
作者
Barreto, PSLM
Lynn, B
Scott, M
机构
[1] Univ Sao Paulo, Escola Politecn, BR-05508900 Sao Paulo, Brazil
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Dublin City Univ, Sch Comp Applicat, Dublin 9, Ireland
来源
关键词
pairing-based cryptosystems; group generators; elliptic curves; Tate pairing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a simple algorithm to select group generators suitable for pairing-based cryptosystems. The selected parameters are shown to favor implementations of the Tate pairing that are at once conceptually simple and efficient, with an observed performance about 2 to 10 times better than previously reported implementations, depending on the embedding degree. Our algorithm has beneficial side effects: various non-pairing operations become faster, and bandwidth may be saved.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [1] Exponentiation in Pairing-Friendly Groups Using Homomorphisms
    Galbraith, Steven D.
    Scott, Michael
    PAIRING-BASED CRYPTOGRAPHY - PAIRING 2008, 2008, 5209 : 211 - +
  • [2] A Taxonomy of Pairing-Friendly Elliptic Curves
    Freeman, David
    Scott, Michael
    Teske, Edlyn
    JOURNAL OF CRYPTOLOGY, 2010, 23 (02) : 224 - 280
  • [3] Constructing Pairing-friendly Elliptic Curve
    Dai, Guangming
    Wang, Maocai
    Pen, Lei
    Hu, Hanping
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [4] Heuristics on pairing-friendly abelian varieties
    Boxall, John
    Gruenewald, David
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01): : 419 - 443
  • [5] A Taxonomy of Pairing-Friendly Elliptic Curves
    David Freeman
    Michael Scott
    Edlyn Teske
    Journal of Cryptology, 2010, 23 : 224 - 280
  • [6] Heuristics on pairing-friendly elliptic curves
    Boxall, John
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2012, 6 (02) : 81 - 104
  • [7] On Cycles of Pairing-Friendly Abelian Varieties
    Santos, Maria Corte-Real
    Costello, Craig
    Naehrig, Michael
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT IX, 2024, 14928 : 221 - 253
  • [8] Pairing-Friendly Twisted Hessian Curves
    Chuengsatiansup, Chitchanok
    Martindale, Chloe
    PROGRESS IN CRYPTOLOGY, INDOCRYPT 2018, 2018, 11356 : 228 - 247
  • [9] On Cycles of Pairing-Friendly Elliptic Curves
    Chiesa, Alessandro
    Chua, Lynn
    Weidner, Matthew
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (02): : 175 - 192
  • [10] Pairing-Friendly Primes for Abelian Varieties
    Grzeskowiak, Maciej
    FUNDAMENTA INFORMATICAE, 2016, 149 (04) : 385 - 400