Present status of the conceptual design of IFMIF Target Facility

被引:1
|
作者
Katsuta, H [1 ]
Kato, Y
Konishi, S
Miyauchi, Y
Smith, D
Hua, T
Green, L
Benamati, G
Cevolani, S
Roehrig, H
Schutz, W
机构
[1] Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan
[2] Ishikawajima Harima Heavy Ind Co Ltd, Chiyoda Ku, Tokyo 100, Japan
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] Westinghouse Sci & Technol Ctr, Pittsburgh, PA 15235 USA
[5] Ente Le Nuove Tecnol Energia & Ambiente, Brasimone, Italy
[6] Ente Le Nuove Tecnol Energia & Ambiente, Bologna, Italy
[7] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
关键词
D O I
10.1016/S0022-3115(98)00096-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) has been conducted. For the IFMIF Target Facility, the conceptual designs of the following two main components have been performed. The design concept of IFMIF utilizes a high energy deuteron beam of 30-40 MeV and total current of 250 mA, impinging on a flowing lithium jet to produce high energy neutrons for irradiation of candidate fusion materials. (1) The target assembly : The kinetic energy of the deuteron beam is deposited on a Li-jet target and neutrons are produced through the d-Li stripping reaction in this target. The assembly is designed to get a stable lithium jet and to prevent the onset of lithium boiling. For 40-MeV deuteron beam (total current of 250 mA) and a beam footprint of 5 x 20 cm(2) lithium jet dimensions are designed to be 2.5 cm thick and 26 cm wide. The lithium jet parameters are given. (2) Lithium loop: The loop circulates the lithium to and from the target assembly and removes the heat deposited by the deuteron beam containing systems for maintaining the high purity of the lithium required for radiological safety and to minimize corrosion. The maximum lithium flow rate is 130 Vs and the total lithium inventory is about 21 m(3). The IFMIF policy requires that the lithium loop system be designed to guarantee no combustion of lithium in the event of a lithium leak. This can be achieved by use of multiple confinement of the lithium carrying components. The radioactive. waste generated by the Target Facilities is estimated. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:388 / 393
页数:6
相关论文
共 50 条
  • [1] Conceptual design of the IFMIF target facility
    Katsuta, H
    Smith, D
    Kato, Y
    Hua, T
    Green, L
    Hoshi, Y
    Cevolani, S
    Konishi, S
    [J]. FUSION TECHNOLOGY, 1996, 30 (03): : 1152 - 1160
  • [2] Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)
    Nakamura, H
    Riccardi, B
    Loginov, N
    Ara, K
    Burgazzi, L
    Cevolani, S
    Dell'Orco, G
    Fazio, C
    Giusti, D
    Horiike, H
    Ida, M
    Ise, H
    Kakui, H
    Matsui, H
    Micciche, G
    Muroga, T
    Nakamura, H
    Shimizu, K
    Sugimoto, M
    Suzuki, A
    Takeuchi, H
    Tanaka, S
    Yoneoka, T
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2004, 329 : 202 - 207
  • [3] Present status of Japanese tasks for lithium target facility under IFMIF/EVEDA
    Nakamura, Kazuyuki
    Furukawa, Tomohiro
    Hirakawa, Yasushi
    Kanemura, Takuji
    Kondo, Hiroo
    Ida, Mizuho
    Niitsuma, Shigeto
    Ohtaka, Masahiko
    Watanabe, Kazuyoshi
    Horiike, Hiroshi
    Hoashi, Eiji
    Suzuki, Sachiko
    Yamaoka, Nobuo
    Sugiura, Hirokazu
    Terai, Takayuki
    Suzuki, Akihiro
    Yagi, Juro
    Bannai, Mikiko
    Fukada, Satoshi
    Nakamura, Hiroo
    Edao, Yuki
    Tsuji, Yoshiyuki
    Furuya, Kazuyuki
    [J]. FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) : 2491 - 2494
  • [4] The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities
    Nitti, F. S.
    Ibarra, A.
    Ida, M.
    Favuzza, P.
    Furukawa, T.
    Groeschel, F.
    Heidinger, R.
    Kanemura, T.
    Knaster, J.
    Kondo, H.
    Micchiche, G.
    Sugimoto, M.
    Wakai, E.
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 100 : 425 - 430
  • [5] Conceptual design of the international fusion materials irradiation facility (IFMIF)
    Shannon, TE
    Jameson, RA
    Katsuta, H
    Maekawa, H
    Martone, M
    Moslang, A
    Teplyakov, V
    Rennich, MJ
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1998, 258 : 106 - 112
  • [6] Conceptual design of the International Fusion Materials Irradiation Facility (IFMIF)
    Shannon, TE
    Rennich, MJ
    Kondo, T
    Katsuta, H
    Maekawa, H
    Jameson, RA
    Martone, M
    Möslang, A
    Teplyakov, V
    [J]. FUSION ENERGY 1996, VOL 3, 1997, : 437 - 449
  • [7] Review of accelerator conceptual design for the international fusion materials irradiation facility (IFMIF)
    Berwald, DH
    Rathke, JW
    Bruhwiler, DL
    Mendelsohn, SL
    Myers, TJ
    Paulson, CC
    Peacock, MA
    Piaszczyk, CM
    Piechowiak, EM
    Jameson, RA
    [J]. FUSION TECHNOLOGY, 1996, 30 (03): : 1161 - 1166
  • [8] Overview of the international fusion materials irradiation facility (IFMIF) conceptual design activity
    Shannon, TE
    [J]. FUSION TECHNOLOGY, 1996, 30 (03): : 1141 - 1144
  • [9] Review of accelerator conceptual design for the international fusion materials irradiation facility (IFMIF)
    Northrop Grumman Corp, Bethpage, NY, United States
    [J]. Fusion Technol, 3 (1161-1166):
  • [10] Status of lithium target system for international fusion materials irradiation facility (IFMIF)
    Nakamura, H
    Ida, M
    Sugimoto, M
    Takeuchi, H
    Yutani, T
    [J]. FUSION ENGINEERING AND DESIGN, 2001, 58-59 : 919 - 923