An update on the knee osteoarthritis severity grading using wide residual learning

被引:4
|
作者
Helwan, Abdulkader [1 ]
Azar, Danielle [1 ]
Abdellatef, Hamdan [1 ]
机构
[1] Lebanese Amer Univ, Byblos, Lebanon
关键词
Knee osteoarthritis; Kellgren Lawrence; Wide ResNet-50-2; Grad-Cam; Residual learning;
D O I
10.3233/XST-221190
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
BACKGROUND: Knee Osteoarthritis (KOA) is the most common type of Osteoarthritis (OA) and it is diagnosed by physicians using a standard 0 - 4 Kellgren Lawrence (KL) grading system which sets the KOA on a spectrum of 5 grades; starting from normal (0) to Severe OA (4). OBJECTIVES: In this paper, we propose a transfer learning approach of a very deep wide residual learning-based network (WRN-50-2) which is fine-tuned using X-ray plain radiographs from the Osteoarthritis Initiative (OAI) dataset to learn the KL severity grading of KOA. METHODS: We propose a data augmentation approach of OAI data to avoid data imbalance and reduce overfitting by applying it only to certain KL grades depending on their number of plain radiographs. Then we conduct experiments to test the model based on an independent testing data of original plain radiographs acquired from the OAI dataset. RESULTS: Experimental results showed good generalization power in predicting the KL grade of knee X-rays with an accuracy of 72% and Precision 74%. Moreover, using Grad-Cam, we also observed that network selected some distinctive features that describe the prediction of a KL grade of a knee radiograph. CONCLUSION: This study demonstrates that our proposed new model outperforms several other related works, and it can be further improved to be used to help radiologists make more accurate and precise diagnosis of KOA in future clinical practice.
引用
收藏
页码:1009 / 1021
页数:13
相关论文
共 50 条
  • [1] Knee osteoarthritis severity grading using vision transformer
    Alshareef, Esam Alsadiq
    Ebrahim, Fawzi Omar
    Lamami, Yosra
    Milad, Mohamed Burid
    Eswani, Mohamed S. A.
    Bashir, Sedigh Abdalla
    Bshina, Salah A. M.
    Jakdoum, Anas
    Abourqeeqah, Asharaf
    Elbasir, Mohamed O.
    Elbahrit, Ellafi A.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (06) : 8303 - 8313
  • [2] Deep Learning for Automatic Knee Osteoarthritis Severity Grading and Classification
    Kinger, Shakti
    [J]. INDIAN JOURNAL OF ORTHOPAEDICS, 2024,
  • [3] SEVERITY GRADING MECHANICAL BIOMARKERS OF KNEE OSTEOARTHRITIS
    Mezghani, N.
    Ouakrim, Y.
    Fuentes, A.
    Mitiche, A.
    Hagmeister, N.
    Venditolli, P. -A.
    de Guise, J.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S125 - S126
  • [4] DEEP SEMI-SUPERVISED ACTIVE LEARNING FOR KNEE OSTEOARTHRITIS SEVERITY GRADING
    Raisuddin, Abu Mohammed
    Nguyen, Huy Hoang
    Tiulpin, Aleksei
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [5] Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models
    Ahmed, Sozan Mohammed
    Mstafa, Ramadhan J.
    [J]. DIAGNOSTICS, 2022, 12 (12)
  • [6] VALIDATION OF A PROPOSED ULTRASONOGRAPHIC GRADING SCALE FOR SEVERITY OF PRIMARY KNEE OSTEOARTHRITIS
    Mortada, M. A.
    Al-Toukhy, M. A. E. -H.
    Eldein, N. Ezz
    Zeid, A.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 751 - 751
  • [7] Comprehensive Study on Scoring and Grading Systems for Predicting the Severity of Knee Osteoarthritis
    Mahendrakar, Pavan
    Kumar, Dileep
    Patil, Uttam
    [J]. CURRENT RHEUMATOLOGY REVIEWS, 2024, 20 (02) : 133 - 156
  • [8] Reliability of a Proposed Ultrasonographic Grading Scale for Severity of Primary Knee Osteoarthritis
    Mortada, Mohamed
    Zeid, Ayman
    Al-Toukhy, Mirvat Abd El-Hamid
    Ezzeldin, Nillie
    Elgawish, M.
    [J]. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS, 2016, 9 : 161 - 166
  • [9] Identification of Severe Grading in Knee OsteoArthritis from MRI using Ensemble Deep Learning
    Alyami, Jaber
    [J]. CURRENT MEDICAL IMAGING, 2024,
  • [10] Grading of Knee Osteoarthritis Using Convolutional Neural Networks
    Sarvamangala, D. R.
    Kulkarni, Raghavendra V.
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2985 - 3009