Efficient Mining of High Average-Utility Itemsets with Multiple Minimum Thresholds

被引:13
|
作者
Lin, Jerry Chun-Wei [1 ]
Li, Ting [1 ]
Fournier-Viger, Philippe [2 ]
Hong, Tzung-Pei [3 ,4 ]
Su, Ja-Hwung [5 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Harbin Inst Technol, Sch Nat Sci & Humanities, Shenzhen Grad Sch, Shenzhen, Peoples R China
[3] Natl Univ Kaohsiung, Dept Comp Sci & Informat Engn, Kaohsiung, Taiwan
[4] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung, Taiwan
[5] Cheng Shiu Univ, Dept Informat Management, Kaohsiung, Taiwan
关键词
High average-utility itemsets; Multiple thresholds; Data mining; Downwarc closure; Utility;
D O I
10.1007/978-3-319-41561-1_2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High average-utility itemsets mining (HAUIM) is a key data mining task, which aims at discovering high average-utility itemsets (HAUIs) by taking itemset length into account in transactional databases. Most of these algorithms only consider a single minimum utility threshold for identifying the HAUIs. In this paper, we address this issue by introducing the task of mining HAUIs with multiple minimum average-utility thresholds (HAUIM-MMAU), where the user may assign a distinct minimum average-utility threshold to each item or itemset. Two efficient IEUCP and PBCS strategies are designed to further reduce the search space of the enumeration tree, and thus speed up the discovery of HAUIs when considering multiple minimum average utility thresholds. Extensive experiments carried on both real-life and synthetic databases show that the proposed approaches can efficiently discover the complete set of HAUIs when considering multiple minimum average-utility thresholds.
引用
收藏
页码:14 / 28
页数:15
相关论文
共 50 条
  • [1] Efficient Mining of High Average-Utility Itemsets with Multiple Thresholds
    Wu, Tsu-Yang
    Lin, Jerry Chun-Wei
    Ren, Shifeng
    [J]. ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PT I, 2018, 81 : 198 - 205
  • [2] Efficient mining of high utility itemsets with multiple minimum utility thresholds
    Krishnamoorthy, Srikumar
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 69 : 112 - 126
  • [3] Mining High Average-Utility Itemsets
    Hong, Tzung-Pei
    Lee, Cho-Han
    Wang, Shyue-Liang
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 2526 - +
  • [4] MEMU: More Efficient Algorithm to Mine High Average-Utility Patterns With Multiple Minimum Average-Utility Thresholds
    Lin, Jerry Chun-Wei
    Ren, Shifeng
    Fournier-Viger, Philippe
    [J]. IEEE ACCESS, 2018, 6 : 7593 - 7609
  • [5] High average-utility itemsets mining: a survey
    Kuldeep Singh
    Rajiv Kumar
    Bhaskar Biswas
    [J]. Applied Intelligence, 2022, 52 : 3901 - 3938
  • [6] High average-utility itemsets mining: a survey
    Singh, Kuldeep
    Kumar, Rajiv
    Biswas, Bhaskar
    [J]. APPLIED INTELLIGENCE, 2022, 52 (04) : 3901 - 3938
  • [7] Efficient mining of high-utility itemsets using multiple minimum utility thresholds
    Lin, Jerry Chun-Wei
    Gan, Wensheng
    Fournier-Viger, Philippe
    Hong, Tzung-Pei
    Zhan, Justin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 113 : 100 - 115
  • [8] Generalized maximal utility for mining high average-utility itemsets
    Wei Song
    Lu Liu
    Chaomin Huang
    [J]. Knowledge and Information Systems, 2021, 63 : 2947 - 2967
  • [9] Generalized maximal utility for mining high average-utility itemsets
    Song, Wei
    Liu, Lu
    Huang, Chaomin
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (11) : 2947 - 2967
  • [10] A fast algorithm for mining high average-utility itemsets
    Jerry Chun-Wei Lin
    Shifeng Ren
    Philippe Fournier-Viger
    Tzung-Pei Hong
    Ja-Hwung Su
    Bay Vo
    [J]. Applied Intelligence, 2017, 47 : 331 - 346