Rank Determination for Low-Rank Data Completion

被引:0
|
作者
Ashraphijuo, Morteza [1 ]
Wang, Xiaodong [1 ]
Aggarwal, Vaneet [2 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Low-rank data completion; rank estimation; tensor; matrix; manifold; Tucker rank; tensor-train rank; CP rank; multi-view matrix;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, fundamental conditions on the sampling patterns have been obtained for finite completability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider the scenario where the rank is not given and we aim to approximate the unknown rank based on the location of sampled entries and some given completion. We consider a number of data models, including single-view matrix, multi-view matrix, CP tensor, tensor-train tensor and Tucker tensor. For each of these data models, we provide an upper bound on the rank when an arbitrary low-rank completion is given. We characterize these bounds both deterministically, i.e., with probability one given that the sampling pattern satisfies certain combinatorial properties, and probabilistically, i.e., with high probability given that the sampling probability is above some threshold. Moreover, for both single-view matrix and CP tensor, we are able to show that the obtained upper bound is exactly equal to the unknown rank if the lowest-rank completion is given. Furthermore, we provide numerical experiments for the case of single-view matrix, where we use nuclear norm minimization to find a low-rank completion of the sampled data and we observe that in most of the cases the proposed upper bound on the rank is equal to the true rank.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [2] Low-Rank Matrix Completion
    Chi, Yuejie
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) : 178 - 181
  • [3] Low-rank Tensor Completion for PMU Data Recovery
    Ghasemkhani, Amir
    Liu, Yunchuan
    Yang, Lei
    [J]. 2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [4] Nonlocal Low-Rank Tensor Completion for Visual Data
    Zhang, Lefei
    Song, Liangchen
    Du, Bo
    Zhang, Yipeng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (02) : 673 - 685
  • [5] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [6] On the equivalence between low-rank matrix completion and tensor rank
    Derksen, Harm
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 645 - 667
  • [7] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [8] A Converse to Low-Rank Matrix Completion
    Pimentel-Alarcon, Daniel L.
    Nowak, Robert D.
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 96 - 100
  • [9] DECENTRALIZED LOW-RANK MATRIX COMPLETION
    Ling, Qing
    Xu, Yangyang
    Yin, Wotao
    Wen, Zaiwen
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2925 - 2928
  • [10] Adaptive Low-Rank Matrix Completion
    Tripathi, Ruchi
    Mohan, Boda
    Rajawat, Ketan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (14) : 3603 - 3616