Longitudinal strength of a high-speed ferry

被引:1
|
作者
Schellin, TE
de Lucas, AP
机构
[1] German Lloyd, D-20459 Hamburg, Germany
[2] NAVANTIA, Madrid 28006, Spain
关键词
D O I
10.1016/j.apor.2005.08.004
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The longitudinal strength of the high-speed ferry was investigated by subjecting the ship's hull girder to long-term loads obtained from a frequency-domain panel code. Prior to the statistical analysis, linearly computed transfer functions were corrected for nonlinear effects, yielding two sets of transfer functions valid for different wave amplitudes. One set corresponded to the hogging condition; the other set, to the sagging condition. Two regular equivalent design waves were specified that resulted in loads representing the most severe global design load conditions. The still-water loading condition, yielding a still-water vertical bending moment in hogging, was superimposed on the wave-induced loads to obtain the total (design) loads in hogging. For the sagging condition only, additional impact-related loads were superimposed to obtain the total (design) loads in sagging. A finite element model of the ship's structure was subjected to pressure distributions according to the two regular design waves. For comparison with classification society rule values, a simple beam theory strength analysis of the ship's midship section was performed first, and then another finite element analysis was carried out, whereby the imposed loads were tuned to the rule values of vertical bending moments. Rule-based magnitudes of nominal maximum longitudinal stress deviated significantly (25-39%) from comparable stresses obtained by the panel code based finite element analysis. However, stresses obtained from the rule-based finite element analysis agreed more favorably, especially in hogging. In the uppermost deck, for example, the panel code based compressive stress was only 9% larger than the comparable stress from the rule-based finite element analysis. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:298 / 308
页数:11
相关论文
共 50 条