F-traceless component of the conformal curvature tensor on Kahler manifold

被引:1
|
作者
Funabashi, Shoichi [1 ]
Kim, Hang Sook [2 ,3 ]
Kim, Young-Mi [2 ,3 ]
Pak, Jin Suk [4 ]
机构
[1] Nippon Inst Technol, Dept Math, Minami, Saitama 3458501, Japan
[2] Inje Univ, Dept Computat Math, Sch Comp Aided Sci, Kimhae 621749, South Korea
[3] Inje Univ, Inst Math Sci, Coll Nat Sci, Kimhae 621749, South Korea
[4] Kyungpook Natl Univ, Dept Math Educ, Taegu 702701, South Korea
关键词
Kahler manifold; conformal curvature tensor; traceless decomposition; F-traceless decomposition; constant holomorphic sectional curvature; spectrum;
D O I
10.4134/BKMS.2007.44.4.795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate F-traceless component of the conformal curvature tensor defined by (3.6) in Kahler manifolds of dimension >= 4, and show that the F-traceless component is invariant under concircular change. In particular, we determine Kahler manifolds with parallel F-traceless component and improve some theorems, provided in the previous paper ([2]), which are concerned with the traceless component of the conformal curvature tensor and the spectrum of the Laplacian acting on p (0 <= p <= 2)forms on the manifold by using the F-traceless component.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 50 条
  • [1] Traceless component of the conformal curvature tensor in Kahler manifold
    Funabashi, S.
    Kim, H. S.
    Kim, Y. -M.
    Pak, J. S.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (03) : 857 - 874
  • [2] Traceless component of the conformal curvature tensor in Kähler manifold
    S. Funabashi
    H. S. Kim
    Y.-M. Kim
    J. S. Pak
    [J]. Czechoslovak Mathematical Journal, 2006, 56 : 857 - 874
  • [3] SOME PROPERTIES OF BOCHNER CURVATURE TENSOR IN A KAHLER MANIFOLD
    MISHRA, RS
    HIT, R
    [J]. TENSOR, 1971, 22 (01): : 69 - &
  • [4] On the contact conformal curvature tensor of a contact metric manifold
    Kim, Jeong-Sik
    Choi, Jaedong
    Ozgur, Cihan
    Tripathi, Mukut Mani
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2006, 37 (04): : 199 - 207
  • [5] ON A TYPE OF RIEMANNIAN MANIFOLD WITH CONSERVATIVE CONFORMAL CURVATURE TENSOR
    CHAKI, MC
    DE, UC
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1981, 34 (07): : 965 - 968
  • [6] ON A TYPE OF RIEMANN MANIFOLD WITH CONFORMAL CONSERVATIF CURVATURE TENSOR
    CHAKI, MC
    DE, UC
    [J]. ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1981, 95 (02): : 81 - 84
  • [7] One component of the curvature tensor of a Lorentzian manifold
    Galaev, Anton S.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) : 962 - 971
  • [8] ON THE CONHARMONIC CURVATURE TENSOR OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD
    Abood, Habeeb M.
    Al-Hussaini, Farah H.
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 269 - 278
  • [9] CURVATURE TENSORS IN THE KAHLER MANIFOLD
    POKHARIYAL, GP
    [J]. DISCOVERY AND INNOVATION, 1992, 4 (03): : 17 - 21
  • [10] ON THE QUASI-CONFORMAL CURVATURE TENSOR OF A (k, μ)-CONTACT METRIC MANIFOLD
    De, U. C.
    Sarkar, Avijit
    [J]. MATHEMATICAL REPORTS, 2012, 14 (02): : 115 - 129