Ricci flow on compact Kahler manifolds of positive bisectional curvature

被引:17
|
作者
Cao, HD [1 ]
Chen, BL
Zhu, XP
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
[3] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[4] Chinese Univ Hong Kong, Inst Math Sci, Unit 601, Shatin, Hong Kong, Peoples R China
关键词
D O I
10.1016/j.crma.2003.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note announces a new proof of the uniform estimate on the curvature of metric solutions to the Ricci flow on a compact Kahler manifold with positive bisectional curvature. This proof does not pre-suppose the existence of a Kahler-Einstein metric on the manifold, unlike the recent work of XiuXiong Chen and Gang Tian. It is based on the Harnack inequality for the Ricci-Kahler flow (see Invent. Math. 10 (1992) 247-263), and also on an estimation of the injectivity radius for the Ricci flow, obtained recently by Perelman.
引用
收藏
页码:781 / 784
页数:4
相关论文
共 50 条