CollaGAN: Collaborative GAN for Missing Image Data Imputation

被引:108
|
作者
Lee, Dongwook [1 ]
Kim, Junyoung [1 ]
Moon, Won-Jin [2 ]
Ye, Jong Chul [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Daejeon, South Korea
[2] Konkuk Univ, Med Ctr, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR.2019.00259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications requiring multiple inputs to obtain a desired output, if any of the input data is missing, it often introduces large amounts of bias. Although many techniques have been developed for imputing missing data, the image imputation is still difficult due to complicated nature of natural images. To address this problem, here we proposed a novel framework for missing image data imputation, called Collaborative Generative Adversarial Network (CollaGAN). CollaGAN convert the image imputation problem to a multi-domain images-to-image translation task so that a single generator and discriminator network can successfully estimate the missing data using the remaining clean data set. We demonstrate that CollaGAN produces the images with a higher visual quality compared to the existing competing approaches in various image imputation tasks.
引用
收藏
页码:2482 / 2491
页数:10
相关论文
共 50 条
  • [1] COLI: Collaborative clustering missing data imputation
    Wan, Daoming
    Razavi-Far, Roozbeh
    Saif, Mehrdad
    Mozafari, Niloofar
    [J]. PATTERN RECOGNITION LETTERS, 2021, 152 : 420 - 427
  • [2] Modified GAN Model for Traffic Missing Data Imputation
    Li, Huiping
    Wang, Yinhai
    Li, Meng
    [J]. CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 3013 - 3023
  • [3] IMPUTATION OF MISSING DATA
    Lunt, M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 49 - 49
  • [4] Missing data imputation: focusing on single imputation
    Zhang, Zhongheng
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (01)
  • [5] A Technique of Recursive Reliability-Based Missing Data Imputation for Collaborative Filtering
    Ihm, Sun-Young
    Lee, Shin-Eun
    Park, Young-Ho
    Nasridinov, Aziz
    Kim, Miyeon
    Park, So-Hyun
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [6] Semi-GAN: An Improved GAN-Based Missing Data Imputation Method for the Semiconductor Industry
    Lee, Sun-Yong
    Connerton, Timothy Paul
    Lee, Yeon-Woo
    Kim, Daeyoung
    Kim, Donghwan
    Kim, Jin-Ho
    [J]. IEEE Access, 2022, 10 : 72328 - 72338
  • [7] Semi-GAN: An Improved GAN-Based Missing Data Imputation Method for the Semiconductor Industry
    Lee, Sun-Yong
    Connerton, Timothy Paul
    Lee, Yeon-Woo
    Kim, Daeyoung
    Kim, Donghwan
    Kim, Jin-Ho
    [J]. IEEE ACCESS, 2022, 10 : 72328 - 72338
  • [8] Missing Data: data replacement and imputation
    Hutcheson, Graeme
    Pampaka, Maria
    [J]. JOURNAL OF MODELLING IN MANAGEMENT, 2012, 7 (02)
  • [9] Missing Data and Multiple Imputation
    Cummings, Peter
    [J]. JAMA PEDIATRICS, 2013, 167 (07) : 656 - 661
  • [10] Missing Data Imputation: A Survey
    Kelkar, Bhagyashri Abhay
    [J]. INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY, 2022, 14 (01)