Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations

被引:0
|
作者
Ishiwatari, Taichi [1 ]
Yasuda, Yuki [1 ]
Miyazaki, Taro [1 ]
Goto, Jun [1 ]
机构
[1] NHK Sci & Technol Res Labs, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interest in emotion recognition in conversations (ERC) has been increasing in various fields, because it can be used to analyze user behaviors and detect fake news. Many recent ERC methods use graph-based neural networks to take the relationships between the utterances of the speakers into account. In particular, the state-of-the-art method considers self- and inter-speaker dependencies in conversations by using relational graph attention networks (RGAT). However, graph-based neural networks do not take sequential information into account. In this paper, we propose relational position encodings that provide RGAT with sequential information reflecting the relational graph structure. Accordingly, our RGAT model can capture both the speaker dependency and the sequential information. Experiments on four ERC datasets show that our model is beneficial to recognizing emotions expressed in conversations. In addition, our approach empirically outperforms the state-of-the-art on all of the benchmark datasets.
引用
收藏
页码:7360 / 7370
页数:11
相关论文
共 50 条
  • [1] Residual Relation-Aware Attention Deep Graph-Recurrent Model for Emotion Recognition in Conversation
    Duong, Anh-Quang
    Ho, Ngoc-Huynh
    Pant, Sudarshan
    Kim, Seungwon
    Kim, Soo-Hyung
    Yang, Hyung-Jeong
    [J]. IEEE ACCESS, 2024, 12 : 2349 - 2360
  • [2] DialogueTRGAT: Temporal and Relational Graph Attention Network for Emotion Recognition in Conversations
    Kang, Junjun
    Kong, Fang
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 460 - 472
  • [3] Relation-Aware Pedestrian Attribute Recognition with Graph Convolutional Networks
    Tan, Zichang
    Yan, Yang
    Wan, Jun
    Guo, Guodong
    Li, Stan Z.
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12055 - 12062
  • [4] RAGA: Relation-Aware Graph Attention Networks for Global Entity Alignment
    Zhu, Renbo
    Ma, Meng
    Wang, Ping
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 501 - 513
  • [5] DualGATs: Dual Graph Attention Networks for Emotion Recognition in Conversations
    Zhang, Duzhen
    Chen, Feilong
    Chen, Xiuyi
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 7395 - 7408
  • [6] Relation-aware Graph Convolutional Networks for Multi-relational Network Alignment
    Fang, Yujie
    Li, Xin
    Ye, Rui
    Tan, Xiaoyan
    Zhao, Peiyao
    Wang, Mingzhong
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [7] Relation-Aware Graph Attention Network for Visual Question Answering
    Li, Linjie
    Gan, Zhe
    Cheng, Yu
    Liu, Jingjing
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10312 - 10321
  • [8] Relation-aware attention for video captioning via graph learning
    Tu, Yunbin
    Zhou, Chang
    Guo, Junjun
    Li, Huafeng
    Gao, Shengxiang
    Yu, Zhengtao
    [J]. PATTERN RECOGNITION, 2023, 136
  • [9] LR-GCN: Latent Relation-Aware Graph Convolutional Network for Conversational Emotion Recognition
    Ren, Minjie
    Huang, Xiangdong
    Li, Wenhui
    Song, Dan
    Nie, Weizhi
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4422 - 4432
  • [10] Improving Graph Convolutional Networks Based on Relation-Aware Attention for End-to-End Relation Extraction
    Hong, Yin
    Liu, Yanxia
    Yang, Suizhu
    Zhang, Kaiwen
    Wen, Aiqing
    Hu, Jianjun
    [J]. IEEE ACCESS, 2020, 8 : 51315 - 51323