Soybean oil has been hydrogenated electrochemically in a solid polymer electrolyte (SPE) reactor at 60 degrees C and 1 atm pressure. These experiments focused on identifying cathode designs and reactor operation conditions that improved fatty acid hydrogenation selectivities. Increasing oil mass transfer into and out of the Pd-black cathode catalyst layer (by increasing the porosity of the cathode carbon paper/cloth backing material, increasing the oil feed flow rate, and inserting a turbulence promoter into the oil feed flow channel) decreased the concentrations of stearic acid and linolenic acid in oil products [for example, an iodine value (IV) 98 oil contained 12.2% C-18:0 and 2.3% C-18:3]. When a second metal (Ni, Cd, Zn, Pb, Cr, Fe, Ag, Cu, or Co) was electrodeposited on a Pd-black powder cathode, substantial increases in the linolenate, linoleate, and oleate selectivities were observed. For example, a Pd/Co cathode was used to synthesize an IV 113 soybean oil with 5.3% stearic acid and 2.3% linolenic acid. The trans isomer content of soybean oil products was in the range of 6-9.5% (corresponding to specific isomerization indices of 0.15-0.40, depending on the product IV) and did not increase significantly for high fatty acid hydrogenation selectivity conditions.