Advances in Spatial Econometrics: Parametric vs. Semiparametric Spatial Autoregressive Models

被引:8
|
作者
Basile, Roberto [1 ]
Minguez, Roman [2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Econ, Corso Gran Priorato Malta,1, I-81043 Capua, CE, Italy
[2] Univ Castilla La Mancha, Cuenca, Spain
关键词
Spatial econometrics; Semiparametric models; DYNAMIC PANEL-DATA; GEOGRAPHICALLY WEIGHTED REGRESSION; MAXIMUM LIKELIHOOD ESTIMATORS; DEPENDENCE; HETEROGENEITY; FRAMEWORK; INFERENCE; WEAK;
D O I
10.1007/978-3-319-65627-4_4
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this Chapter we provide a critical review of parametric and semi-parametric spatial econometric approaches. We focus on the capability of each class of models to fit the main features of spatial data (such as strong and weak cross-sectional dependence, spatial heterogeneity, nonlinearities, and time persistence), leaving aside the technicalities related to the estimation methods. We also provide a brief discussion of the existent software developed to estimate most of the econometric models exposed in this Chapter.
引用
收藏
页码:81 / 106
页数:26
相关论文
共 50 条